Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 35(1): e21205, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33337558

RESUMEN

CRISPR/Cas9-mediated genome editing shows cogent potential for the genetic modification of helminth parasites. We report successful gene knock-in (KI) into the genome of the egg of Schistosoma mansoni by combining CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs). We edited the acetylcholinesterase (AChE) gene of S. mansoni targeting two guide RNAs (gRNAs), X5 and X7, located on exon 5 and exon 7 of Smp_154600, respectively. Eggs recovered from livers of experimentally infected mice were transfected by electroporation with a CRISPR/Cas9-vector encoding gRNA X5 or X7 combining with/ without a ssODN donor. Next generation sequencing analysis of reads of amplicon libraries spanning targeted regions revealed that the major modifications induced by CRISPR/Cas9 in the eggs were generated by homology directed repair (HDR). Furthermore, soluble egg antigen from AChE-edited eggs exhibited markedly reduced AChE activity, indicative that programed Cas9 cleavage mutated the AChE gene. Following injection of AChE-edited schistosome eggs into the tail veins of mice, an significantly enhanced Th2 response involving IL-4, -5, -10, and-13 was detected in lung cells and splenocytes in mice injected with X5-KI eggs in comparison to control mice injected with unmutated eggs. A Th2-predominant response, with increased levels of IL-4, -13, and GATA3, also was induced by X5 KI eggs in small intestine-draining mesenteric lymph node cells when the gene-edited eggs were introduced into the subserosa of the ileum of the mice. These findings confirmed the potential and the utility of CRISPR/Cas9-mediated genome editing for functional genomics in schistosomes.


Asunto(s)
Acetilcolinesterasa/metabolismo , Sistemas CRISPR-Cas , Edición Génica , Proteínas del Helminto/metabolismo , Schistosoma mansoni/enzimología , Esquistosomiasis mansoni/metabolismo , Acetilcolinesterasa/genética , Animales , Femenino , Proteínas del Helminto/genética , Ratones , Schistosoma mansoni/genética , Esquistosomiasis mansoni/genética
2.
BMC Biol ; 19(1): 255, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34852797

RESUMEN

BACKGROUND: The consequences of the earth's daily rotation have led to 24-h biological rhythms in most organisms. Even some parasites are known to have daily rhythms, which, when in synchrony with host rhythms, can optimise their fitness. Understanding these rhythms may enable the development of control strategies that take advantage of rhythmic vulnerabilities. Recent work on protozoan parasites has revealed 24-h rhythms in gene expression, drug sensitivity and the presence of an intrinsic circadian clock; however, similar studies on metazoan parasites are lacking. To address this, we investigated if a metazoan parasite has daily molecular oscillations, whether they reveal how these longer-lived organisms can survive host daily cycles over a lifespan of many years and if animal circadian clock genes are present and rhythmic. We addressed these questions using the human blood fluke Schistosoma mansoni that lives in the vasculature for decades and causes the tropical disease schistosomiasis. RESULTS: Using round-the-clock transcriptomics of male and female adult worms collected from experimentally infected mice, we discovered that ~ 2% of its genes followed a daily pattern of expression. Rhythmic processes included a stress response during the host's active phase and a 'peak in metabolic activity' during the host's resting phase. Transcriptional profiles in the female reproductive system were mirrored by daily patterns in egg laying (eggs are the main drivers of the host pathology). Genes cycling with the highest amplitudes include predicted drug targets and a vaccine candidate. These 24-h rhythms may be driven by host rhythms and/or generated by a circadian clock; however, orthologs of core clock genes are missing and secondary clock genes show no 24-h rhythmicity. CONCLUSIONS: There are daily rhythms in the transcriptomes of adult S. mansoni, but they appear less pronounced than in other organisms. The rhythms reveal temporally compartmentalised internal processes and host interactions relevant to within-host survival and between-host transmission. Our findings suggest that if these daily rhythms are generated by an intrinsic circadian clock then the oscillatory mechanism must be distinct from that in other animals. We have shown which transcripts oscillate at this temporal scale and this will benefit the development and delivery of treatments against schistosomiasis.


Asunto(s)
Relojes Circadianos , Parásitos , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Femenino , Humanos , Masculino , Ratones , Parásitos/genética , Schistosoma mansoni/genética , Transcriptoma
3.
BMC Infect Dis ; 17(1): 244, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28376858

RESUMEN

BACKGROUND: Schistosomiasis, one of the neglected tropical diseases, is endemic in more than 70 countries. However, the clinical diagnosis of patients with a low degree of infection is an unsolved technical problem. In areas endemic for schistosomiasis japonica, proctoscopy detection of eggs has been one method used for clinical diagnosis. However, it is often a challenge to find typical live eggs and it is difficult to distinguish live eggs from large numbers of partially degraded and/or completely degraded eggs within colon biopsy tissue. To address this problem, we tested six different morphological and biochemical/molecular markers (ALP; morphological characteristics of egg; CalS (calcified substance); AOS (antioxidase); SDHG (succinic dehydrogenase) and SjR2 mRNA (retrotransposons 2 of S.japonicum genome mRNA)), including four new markers (CalS; AOS; SDHG and SjR2 mRNA.), to determine the viability of S. japonicum eggs deposited in human and mouse colon tissues. Our ultimate aim is to obtain a new method that is more sensitive, practical and accurate to clinically diagnose schistosomiasis. METHODS: Tissue samples were collected from mice at six different time points during S. japonicum infection with or without treatment with praziquantel (PZQ). Four new biochemical or molecular markers were used for the detection of egg viability from mouse liver and intestinal samples: CalS; AOS; SDHG and SjR2 mRNA. Subsequently, all markers were employed for the detection and analysis of eggs deposited in biopsy materials from patients with suspected schistosomiasis japonica for clinical evaluation. Microscopic examination of the egg morphology, worm burden in vivo and ALP (alkaline phosphatase) levels were used as a reference standard to evaluate the sensitivity and reliability of four new markers detecting egg viability. RESULTS: The results of the study showed that the morphology of S. japonicum eggs deposited in tissues of hosts with schistosomiasis, especially cases with chronic schistosomiasis, is complex and egg viability is difficult to judge morphologically, particularly eggs with a fuzzy structure or partially modified eggs. We found that the majority of the viable schistosome eggs determined by four new markers (CalS, AOS, SDHG and SjR2 mRNA) were morphologically difficult to identify. CONCLUSIONS: Among the markers, the most sensitive and specific method was the detection of SjR2 mRNA and the most simple, rapid and practical method was the detection of SDHG. Therefore, the detection of SDHG is the most practical for clinical application and its use could improve the accuracy in diagnosing active schistosome infection.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica/diagnóstico , Animales , Biomarcadores/análisis , Biopsia , Colon/parasitología , Femenino , Humanos , Mucosa Intestinal/parasitología , Hígado/parasitología , Masculino , Ratones , Óvulo , Praziquantel/uso terapéutico , ARN de Helminto/análisis , ARN Mensajero/análisis , Recto/parasitología , Reproducibilidad de los Resultados , Esquistosomiasis Japónica/tratamiento farmacológico , Esquistosomiasis Japónica/parasitología
4.
J Infect Dis ; 213(1): 122-30, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26150545

RESUMEN

Infection with Schistosoma japonicum causes high levels of pathology that is predominantly determined by the cellular and humoral response of the host. However, the specific antibody response that arises during the development of disease is largely undescribed in Asian schistosomiasis-endemic populations. A schistosome protein microarray was used to compare the antibody profiles of subjects with acute infection, with early or advanced disease associated with severe pathology, with chronic infection, and subjects exposed but stool negative for S. japonicum eggs to the antibody profiles of nonexposed controls. Twenty-five immunodominant antigens were identified, including vaccine candidates, tetraspanin-related proteins, transporter molecules, and unannotated proteins. Additionally, individuals with severe pathology had a limited specific antibody response, suggesting that individuals with mild disease may use a broad and strong antibody response, particularly against surface-exposed proteins, to control pathology and/or infection. Our study has identified specific antigens that can discriminate between S. japonicum-exposed groups with different pathologies and may also allow the host to control disease pathology and provide resistance to parasite infection.


Asunto(s)
Anticuerpos Antihelmínticos , Antígenos Helmínticos/inmunología , Schistosoma japonicum/inmunología , Esquistosomiasis/inmunología , Animales , Anticuerpos Antihelmínticos/sangre , Anticuerpos Antihelmínticos/clasificación , Anticuerpos Antihelmínticos/inmunología , Análisis por Conglomerados , Estudios de Cohortes , Proteínas del Helminto/inmunología , Humanos , Análisis por Matrices de Proteínas
5.
Immunol Cell Biol ; 94(1): 52-65, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26044065

RESUMEN

The schistosome blood flukes are some of the largest global causes of parasitic morbidity. Further study of the specific antibody response during schistosomiasis may yield the vaccines and diagnostics needed to combat this disease. Therefore, for the purposes of antigen discovery, sera and antibody-secreting cell (ASC) probes from semi-permissive rats and sera from susceptible mice were used to screen a schistosome protein microarray. Following Schistosoma japonicum infection, rats had reduced pathology, increased antibody responses and broader antigen recognition profiles compared with mice. With successive infections, rat global serological reactivity and the number of recognized antigens increased. The local antibody response in rat skin and lung, measured with ASC probes, increased after parasite migration and contributed antigen-specific antibodies to the multivalent serological response. In addition, the temporal variation of anti-parasite serum antibodies after infection and reinfection followed patterns that appear related to the antigen driving the response. Among the 29 antigens differentially recognized by the infected hosts were numerous known vaccine candidates, drug targets and several S. japonicum homologs of human schistosomiasis resistance markers-the tegument allergen-like proteins. From this set, we prioritized eight proteins that may prove to be novel schistosome vaccine and diagnostic antigens.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad Humoral/inmunología , Esquistosomiasis/inmunología , Esquistosomiasis/parasitología , Animales , Anticuerpos Antihelmínticos/inmunología , Antígenos Helmínticos/inmunología , Susceptibilidad a Enfermedades/inmunología , Ratones , Parásitos/inmunología , Análisis por Matrices de Proteínas , Curva ROC , Ratas Wistar , Schistosoma japonicum/inmunología , Vacunas
6.
PLoS Pathog ; 10(3): e1004033, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24675823

RESUMEN

Schistosomiasis is a neglected tropical disease that is responsible for almost 300,000 deaths annually. Mass drug administration (MDA) is used worldwide for the control of schistosomiasis, but chemotherapy fails to prevent reinfection with schistosomes, so MDA alone is not sufficient to eliminate the disease, and a prophylactic vaccine is required. Herein, we take advantage of recent advances in systems biology and longitudinal studies in schistosomiasis endemic areas in Brazil to pilot an immunomics approach to the discovery of schistosomiasis vaccine antigens. We selected mostly surface-derived proteins, produced them using an in vitro rapid translation system and then printed them to generate the first protein microarray for a multi-cellular pathogen. Using well-established Brazilian cohorts of putatively resistant (PR) and chronically infected (CI) individuals stratified by the intensity of their S. mansoni infection, we probed arrays for IgG subclass and IgE responses to these antigens to detect antibody signatures that were reflective of protective vs. non-protective immune responses. Moreover, probing for IgE responses allowed us to identify antigens that might induce potentially deleterious hypersensitivity responses if used as subunit vaccines in endemic populations. Using multi-dimensional cluster analysis we showed that PR individuals mounted a distinct and robust IgG1 response to a small set of newly discovered and well-characterized surface (tegument) antigens in contrast to CI individuals who mounted strong IgE and IgG4 responses to many antigens. Herein, we show the utility of a vaccinomics approach that profiles antibody responses of resistant individuals in a high-throughput multiplex approach for the identification of several potentially protective and safe schistosomiasis vaccine antigens.


Asunto(s)
Anticuerpos Antihelmínticos/sangre , Antígenos Helmínticos/inmunología , Resistencia a la Enfermedad/inmunología , Esquistosomiasis/inmunología , Vacunas/inmunología , Adolescente , Adulto , Anticuerpos Antihelmínticos/inmunología , Brasil/epidemiología , Enfermedad Crónica , Análisis por Conglomerados , Enfermedades Endémicas , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Desatendidas/inmunología , Análisis por Matrices de Proteínas , Esquistosomiasis/sangre , Esquistosomiasis/epidemiología , Adulto Joven
7.
Expert Rev Proteomics ; 13(1): 19-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26558506

RESUMEN

Schistosomiasis is a neglected tropical disease of clinical significance that, despite years of research, still requires an effective vaccine and improved diagnostics for surveillance, control and potential elimination. Furthermore, the causes of host pathology during schistosomiasis are still not completely understood. The recent sequencing of the genomes of the three key schistosome species has enabled the discovery of many new possible vaccine and drug targets, as well as diagnostic biomarkers, using high-throughput and sensitive proteomics methods. This review focuses on the literature of the last 5 years that has reported on the use of proteomics to both better understand the biology of the schistosome parasites and the disease they cause in definitive mammalian hosts.


Asunto(s)
Proteínas del Helminto/metabolismo , Proteoma/metabolismo , Schistosoma/fisiología , Esquistosomiasis/parasitología , Animales , Proteínas del Helminto/inmunología , Proteínas del Helminto/aislamiento & purificación , Interacciones Huésped-Patógeno , Humanos , Proteoma/inmunología , Proteoma/aislamiento & purificación , Proteómica , Esquistosomiasis/diagnóstico , Esquistosomiasis/inmunología
8.
Parasitology ; 141(13): 1746-60, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25137634

RESUMEN

SUMMARY Serine protease inhibitors (serpin) play essential roles in many organisms. Mammalian serpins regulate the blood coagulation, fibrinolysis, inflammation and complement activation pathways. In parasitic helminths, serpins are less well characterized, but may also be involved in evasion of the host immune response. In this study, a Schistosoma japonicum serpin (SjB10), containing a 1212 bp open reading frame (ORF), was cloned, expressed and functionally characterized. Sequence analysis, comparative modelling and structural-based alignment revealed that SjB10 contains the essential structural motifs and consensus secondary structures of inhibitory serpins. Transcriptional profiling demonstrated that SjB10 is expressed in adult males, schistosomula and eggs but particularly in the cercariae, suggesting a possible role in cercarial penetration of mammalian host skin. Recombinant SjB10 (rSjB10) inhibited pancreatic elastase (PE) in a dose-dependent manner. rSjB10 was recognized strongly by experimentally infected rat sera indicating that native SjB10 is released into host tissue and induces an immune response. By immunochemistry, SjB10 localized in the S. japonicum adult foregut and extra-embryonic layer of the egg. This study provides a comprehensive demonstration of sequence and structural-based analysis of a functional S. japonicum serpin. Furthermore, our findings suggest that SjB10 may be associated with important functional roles in S. japonicum particularly in host-parasite interactions.


Asunto(s)
Proteínas del Helminto/metabolismo , Schistosoma japonicum/metabolismo , Inhibidores de Serina Proteinasa/metabolismo , Serpinas/metabolismo , Secuencia de Aminoácidos , Animales , Cercarias , ADN Complementario/química , ADN Complementario/genética , Femenino , Proteínas del Helminto/genética , Interacciones Huésped-Parásitos , Espacio Intracelular/parasitología , Masculino , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Filogenia , Ratas , Ratas Wistar , Schistosoma japonicum/genética , Alineación de Secuencia , Inhibidores de Serina Proteinasa/genética , Serpinas/genética
9.
Cancers (Basel) ; 16(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38610953

RESUMEN

Cancer is a multifaceted disease arising from numerous genomic aberrations that have been identified as a result of advancements in sequencing technologies. While next-generation sequencing (NGS), which uses short reads, has transformed cancer research and diagnostics, it is limited by read length. Third-generation sequencing (TGS), led by the Pacific Biosciences and Oxford Nanopore Technologies platforms, employs long-read sequences, which have marked a paradigm shift in cancer research. Cancer genomes often harbour complex events, and TGS, with its ability to span large genomic regions, has facilitated their characterisation, providing a better understanding of how complex rearrangements affect cancer initiation and progression. TGS has also characterised the entire transcriptome of various cancers, revealing cancer-associated isoforms that could serve as biomarkers or therapeutic targets. Furthermore, TGS has advanced cancer research by improving genome assemblies, detecting complex variants, and providing a more complete picture of transcriptomes and epigenomes. This review focuses on TGS and its growing role in cancer research. We investigate its advantages and limitations, providing a rigorous scientific analysis of its use in detecting previously hidden aberrations missed by NGS. This promising technology holds immense potential for both research and clinical applications, with far-reaching implications for cancer diagnosis and treatment.

10.
Front Plant Sci ; 15: 1339594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601302

RESUMEN

The tree Eucalyptus camaldulensis is a ubiquitous member of the Eucalyptus genus, which includes several hundred species. Despite the extensive sequencing and assembly of nuclear genomes from various eucalypts, the genus has only one fully annotated and complete mitochondrial genome (mitogenome). Plant mitochondria are characterized by dynamic genomic rearrangements, facilitated by repeat content, a feature that has hindered the assembly of plant mitogenomes. This complexity is evident in the paucity of available mitogenomes. This study, to the best of our knowledge, presents the first E. camaldulensis mitogenome. Our findings suggest the presence of multiple isomeric forms of the E. camaldulensis mitogenome and provide novel insights into minor rearrangements triggered by nested repeat sequences. A comparative sequence analysis of the E. camaldulensis and E. grandis mitogenomes unveils evolutionary changes between the two genomes. A significant divergence is the evolution of a large repeat sequence, which may have contributed to the differences observed between the two genomes. The largest repeat sequences in the E. camaldulensis mitogenome align well with significant yet unexplained structural variations in the E. grandis mitogenome, highlighting the adaptability of repeat sequences in plant mitogenomes.

11.
Immunol Cell Biol ; 91(7): 477-85, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23856766

RESUMEN

Schistosome parasites follow a complex migration path through various tissues, changing their antigenic profile as they develop. A thorough understanding of the antibody response in each tissue region could help unravel the complex immunology of these developing parasites and aid vaccine design. Here we used a novel strategy for analysing the local antibody responses induced by Schistosoma japonicum infection at each site of infection. Cells from rat lymph nodes draining the sites of larval migration (the skin and lungs), the liver-lymph nodes where adults reside and the spleens were cultured to allow the in vivo-induced antibody-secreting cells to release antibody into the media. The amount and isotype of antibodies secreted in the supernatants differed significantly in the different lymph nodes and spleen, corresponding with the migration path of the schistosome worms. In addition, there were significant differences in binding specificity, as determined by surface labelling, western blots and by screening a glycan array. Through capturing the local antibody response, this study has revealed dramatic differences in the quality and specificity of the immune response at different tissue sites, and highlighted the existence of stage-specific protein and carbohydrate antigens. This will provide a valuable tool for the isolation of novel vaccine targets against the larval stages of schistosomes.


Asunto(s)
Anticuerpos Antihelmínticos/metabolismo , Ganglios Linfáticos/metabolismo , Especificidad de Órganos , Schistosoma japonicum/fisiología , Esquistosomiasis Japónica/inmunología , Animales , Antígenos Helmínticos/inmunología , Células Cultivadas , Epítopos/inmunología , Femenino , Humanos , Inmunidad Humoral , Larva , Hígado/inmunología , Hígado/parasitología , Pulmón/inmunología , Pulmón/parasitología , Ganglios Linfáticos/inmunología , Especificidad de Órganos/inmunología , Ratas , Ratas Wistar , Piel/inmunología , Piel/parasitología
12.
Genome Med ; 15(1): 114, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098057

RESUMEN

BACKGROUND: Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. METHODS: In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. RESULTS: Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. CONCLUSIONS: Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.


Asunto(s)
Exoma , Patrón de Herencia , Recién Nacido , Humanos , Genes Recesivos , Mutación , Secuenciación del Exoma , Linaje , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética
13.
Bioessays ; 32(11): 967-76, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21105292

RESUMEN

In the last few years, annexins have been discovered in several nematodes and other parasites, and distinct differences between the parasite annexins and those of the hosts make them potentially attractive targets for anti-parasite therapeutics. Annexins are ubiquitous proteins found in almost all organisms across all kingdoms.Here, we present an overview of novel annexins from parasitic organisms, and summarize their phylogenetic and biochemical properties, with a view to using them as drug or vaccine targets. Building on structural and biological information that has been accumulated for mammalian and plant annexins, we describe a predicted additional secondary structure element found in many parasite annexins that may confer unique functional properties, and present a specific antigenic epitope for use as a vaccine.


Asunto(s)
Anexinas/antagonistas & inhibidores , Descubrimiento de Drogas , Parásitos/metabolismo , Vacunas/biosíntesis , Secuencia de Aminoácidos , Animales , Anexinas/química , Antiinfecciosos/farmacología , Enfermedad , Humanos , Datos de Secuencia Molecular , Parásitos/efectos de los fármacos
14.
Genome Biol ; 22(1): 256, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479618

RESUMEN

Currently, different sequencing platforms are used to generate plant genomes and no workflow has been properly developed to optimize time, cost, and assembly quality. We present LeafGo, a complete de novo plant genome workflow, that starts from tissue and produces genomes with modest laboratory and bioinformatic resources in approximately 7 days and using one long-read sequencing technology. LeafGo is optimized with ten different plant species, three of which are used to generate high-quality chromosome-level assemblies without any scaffolding technologies. Finally, we report the diploid genomes of Eucalyptus rudis and E. camaldulensis and the allotetraploid genome of Arachis hypogaea.


Asunto(s)
Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hojas de la Planta/genética , Programas Informáticos , Arachis/genética , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Diploidia , Especificidad de la Especie , Tetraploidía , Factores de Tiempo
15.
Wellcome Open Res ; 5: 178, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32789192

RESUMEN

Background. At least 250 million people worldwide suffer from schistosomiasis, caused by Schistosoma worms. Genome sequences for several Schistosoma species are available, including a high-quality annotated reference for Schistosoma mansoni. There is a pressing need to develop a reliable functional toolkit to translate these data into new biological insights and targets for intervention. CRISPR-Cas9 was recently demonstrated for the first time in S. mansoni, to produce somatic mutations in the omega-1 ( ω1) gene. Methods. We employed CRISPR-Cas9 to introduce somatic mutations in a second gene, SULT-OR, a sulfotransferase expressed in the parasitic stages of S. mansoni, in which mutations confer resistance to the drug oxamniquine. A 262-bp PCR product spanning the region targeted by the gRNA against SULT-OR was amplified, and mutations identified in it by high-throughput sequencing. Results. We found that 0.3-2.0% of aligned reads from CRISPR-Cas9-treated adult worms showed deletions spanning the predicted Cas9 cut site, compared to 0.1-0.2% for sporocysts, while deletions were extremely rare in eggs. The most common deletion observed in adults and sporocysts was a 34 bp-deletion directly upstream of the predicted cut site, but rarer deletions reaching as far as 102 bp upstream of the cut site were also detected. The CRISPR-Cas9-induced deletions, if homozygous, are predicted to cause resistance to oxamniquine by producing frameshifts, ablating SULT-OR transcription, or leading to mRNA degradation via the nonsense-mediated mRNA decay pathway. However, no SULT-OR knock down at the mRNA level was observed, presumably because the cells in which CRISPR-Cas9 did induce mutations represented a small fraction of all cells expressing SULT-OR. Conclusions. Further optimisation of CRISPR-Cas protocols for different developmental stages and particular cell types, including germline cells, will contribute to the generation of a homozygous knock-out in any gene of interest, and in particular the SULT-OR gene to derive an oxamniquine-resistant stable transgenic line.

16.
Front Immunol ; 10: 645, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001264

RESUMEN

Despite significant progress, China faces the challenge of re-emerging schistosomiasis transmission in currently controlled areas due, in part, to the presence of a range of animal reservoirs, notably water buffalo and cattle, which can harbor Schistosoma japonicum infections. Environmental, ecological and social-demographic changes in China, shown to affect the distribution of oncomelanid snails, can also impact future schistosomiasis transmission. In light of their importance in the S. japonicum, lifecycle, vaccination has been proposed as a means to reduce the excretion of egg from cattle and buffalo, thereby interrupting transmission from these reservoir hosts to snails. A DNA-based vaccine (SjCTPI) our team developed showed encouraging efficacy against S. japonicum in Chinese water buffaloes. Here we report the results of a double-blind cluster randomized trial aimed at determining the impact of a combination of the SjCTPI bovine vaccine (given as a prime-boost regimen), human mass chemotherapy and snail control on the transmission of S. japonicum in 12 selected administrative villages around the Dongting Lake in Hunan province. The trial confirmed human praziquantel treatment is an effective intervention at the population level. Further, mollusciciding had an indirect ~50% efficacy in reducing human infection rates. Serology showed that the SjCTPI vaccine produced an effective antibody response in vaccinated bovines, resulting in a negative correlation with bovine egg counts observed at all post-vaccination time points. Despite these encouraging outcomes, the effect of the vaccine in preventing human infection was inconclusive. This was likely due to activities undertaken by the China National Schistosomiasis Control Program, notably the treatment, sacrifice or removal of bovines from trial villages, over which we had no control; as a result, the trial design was compromised, reducing power and contaminating outcome measures. This highlights the difficulties in undertaking field trials of this nature and magnitude, particularly over a long period, and emphasizes the importance of mathematical modeling in predicting the potential impact of control intervention measures. A transmission blocking vaccine targeting bovines for the prevention of S. japonicum with the required protective efficacy would be invaluable in tandem with other preventive intervention measures if the goal of eliminating schistosomiasis from China is to become a reality.


Asunto(s)
Antihelmínticos/uso terapéutico , Enfermedades de los Bovinos/prevención & control , Praziquantel/uso terapéutico , Esquistosomiasis Japónica/prevención & control , Vacunación/veterinaria , Vacunas/uso terapéutico , Adolescente , Adulto , Anciano , Animales , Búfalos , Bovinos , Niño , Preescolar , China , Método Doble Ciego , Humanos , Persona de Mediana Edad , Esquistosomiasis Japónica/transmisión , Esquistosomiasis Japónica/veterinaria , Caracoles , Adulto Joven
17.
Elife ; 82019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644357

RESUMEN

CRISPR/Cas9-based genome editing has yet to be reported in species of the Platyhelminthes. We tested this approach by targeting omega-1 (ω1) of Schistosoma mansoni as proof of principle. This secreted ribonuclease is crucial for Th2 polarization and granuloma formation. Schistosome eggs were exposed to Cas9 complexed with guide RNA complementary to ω1 by electroporation or by transduction with lentiviral particles. Some eggs were also transfected with a single stranded donor template. Sequences of amplicons from gene-edited parasites exhibited Cas9-catalyzed mutations including homology directed repaired alleles, and other analyses revealed depletion of ω1 transcripts and the ribonuclease. Gene-edited eggs failed to polarize Th2 cytokine responses in macrophage/T-cell co-cultures, while the volume of pulmonary granulomas surrounding ω1-mutated eggs following tail-vein injection into mice was vastly reduced. Knock-out of ω1 and the diminished levels of these cytokines following exposure showcase the novel application of programmed gene editing for functional genomics in schistosomes.


Asunto(s)
Edición Génica , Ribonucleasas/genética , Schistosoma mansoni/enzimología , Schistosoma mansoni/genética , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Línea Celular , Cromosomas/genética , Reparación del ADN/genética , Exones/genética , Regulación de la Expresión Génica , Sitios Genéticos , Granuloma/patología , Recombinación Homóloga/genética , Humanos , Inflamación/patología , Pulmón/parasitología , Pulmón/patología , Ratones , Mutación/genética , Óvulo/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Th2/inmunología , Transgenes
18.
Wellcome Open Res ; 3: 3, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29487916

RESUMEN

Schistosomiasis is an important parasitic disease, touching roughly 200 million people worldwide. The causative agents are different Schistosoma species. Schistosomes have a complex life cycle, with a freshwater snail as intermediate host. After infection, sporocysts develop inside the snail host and give rise to human dwelling larvae. We present here a detailed step-by-step video instruction in English, French, Spanish and Portuguese that shows how these sporocysts can be manipulated and transferred from one snail to another. This procedure provides a technical basis for different types of ex vivo modifications, such as those used in functional genomics studies.

19.
Methods Mol Biol ; 1201: 221-33, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25388117

RESUMEN

The host serological profile to a parasitic infection, such as schistosomiasis, can be used to define potential vaccine and diagnostic targets. Determining the host antibody response using traditional approaches is hindered by the large number of putative antigens in any parasite proteome. Parasite protein microarrays offer the potential for a high-throughput host antibody screen to simplify this task. In order to construct the array, parasite proteins are selected from available genomic sequence and protein databases using bioinformatic tools. Selected open reading frames are PCR amplified, incorporated into a vector for cell-free protein expression, and printed robotically onto glass slides. The protein microarrays can be probed with antisera from infected/immune animals or humans and the antibody reactivity measured with fluorophore labeled antibodies on a confocal laser microarray scanner to identify potential targets for diagnosis or therapeutic or prophylactic intervention.


Asunto(s)
Antígenos de Protozoos/inmunología , Parásitos/inmunología , Reacción en Cadena de la Polimerasa/métodos , Análisis por Matrices de Proteínas/métodos , Animales , Formación de Anticuerpos/inmunología , Bases de Datos de Proteínas , Vectores Genéticos , Sistemas de Lectura Abierta , Parásitos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , ARN Protozoario/aislamiento & purificación
20.
PLoS Negl Trop Dis ; 9(12): e0004280, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26684756

RESUMEN

The development of effective diagnostic tools will be essential in the continuing fight to reduce schistosome infection; however, the diagnostic tests available to date are generally laborious and difficult to implement in current parasite control strategies. We generated a series of single-chain antibody Fv domain (scFv) phage display libraries from the portal lymph node of field exposed water buffaloes, Bubalus bubalis, 11-12 days post challenge with Schistosoma japonicum cercariae. The selected scFv-phages showed clear enrichment towards adult schistosomes and excretory-secretory (ES) proteins by immunofluorescence, ELISA and western blot analysis. The enriched libraries were used to probe a schistosome specific protein microarray resulting in the recognition of a number of proteins, five of which were specific to schistosomes, with RNA expression predominantly in the adult life-stage based on interrogation of schistosome expressed sequence tags (EST). As the libraries were enriched by panning against ES products, these antigens may be excreted or secreted into the host vasculature and hence may make good targets for a diagnostic assay. Further selection of the scFv library against infected mouse sera identified five soluble scFv clones that could selectively recognise soluble whole adult preparations (SWAP) relative to an irrelevant protein control (ovalbumin). Furthermore, two of the identified scFv clones also selectively recognised SWAP proteins when spiked into naïve mouse sera. These host B-cell derived scFvs that specifically bind to schistosome protein preparations will be valuable reagents for further development of a cost effective point-of-care diagnostic test.


Asunto(s)
Anticuerpos Antihelmínticos/metabolismo , Antígenos Helmínticos/análisis , Búfalos/parasitología , Biblioteca de Péptidos , Schistosoma japonicum/inmunología , Pruebas Serológicas/métodos , Anticuerpos de Cadena Única/metabolismo , Animales , Anticuerpos Antihelmínticos/genética , Antígenos Helmínticos/inmunología , Western Blotting , Búfalos/inmunología , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Ratones , Análisis por Matrices de Proteínas , Anticuerpos de Cadena Única/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA