Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(4): 354-365, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29563620

RESUMEN

Mechanisms that degrade inflammatory mRNAs are well known; however, stabilizing mechanisms are poorly understood. Here, we show that Act1, an interleukin-17 (IL-17)-receptor-complex adaptor, binds and stabilizes mRNAs encoding key inflammatory proteins. The Act1 SEFIR domain binds a stem-loop structure, the SEFIR-binding element (SBE), in the 3' untranslated region (UTR) of Cxcl1 mRNA, encoding an inflammatory chemokine. mRNA-bound Act1 directs formation of three compartmentally distinct RNA-protein complexes (RNPs) that regulate three disparate events in inflammatory-mRNA metabolism: preventing mRNA decay in the nucleus, inhibiting mRNA decapping in P bodies and promoting translation. SBE RNA aptamers decreased IL-17-mediated mRNA stabilization in vitro, IL-17-induced skin inflammation and airway inflammation in a mouse asthma model, thus providing a therapeutic strategy for autoimmune diseases. These results reveal a network in which Act1 assembles RNPs on the 3' UTRs of select mRNAs and consequently controls receptor-mediated mRNA stabilization and translation during inflammation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inflamación/inmunología , Interleucina-17/metabolismo , Estabilidad del ARN/fisiología , Transducción de Señal/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Regulación de la Expresión Génica/inmunología , Inflamación/metabolismo , Interleucina-17/inmunología , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Receptores de Interleucina-17/metabolismo
2.
RNA Biol ; 16(12): 1682-1696, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31432740

RESUMEN

Selenoproteins are a unique class of proteins that contain the 21st amino acid, selenocysteine (Sec). Addition of Sec into a protein is achieved by recoding of the UGA stop codon. All 25 mammalian selenoprotein mRNAs possess a 3' UTR stem-loop structure, the Selenocysteine Insertion Sequence (SECIS), which is required for Sec incorporation. It is widely believed that the SECIS is the major RNA element that controls Sec insertion, however recent findings in our lab suggest otherwise for Selenoprotein S (SelS). Here we report that the first 91 nucleotides of the SelS 3' UTR contain a proximal stem loop (PSL) and a conserved sequence we have named the SelS Positive UGA Recoding (SPUR) element. We developed a SelS-V5/UGA surrogate assay for UGA recoding, which was validated by mass spectrometry to be an accurate measure of Sec incorporation in cells. Using this assay, we show that point mutations in the SPUR element greatly reduce recoding in the reporter; thus, the SPUR is required for readthrough of the UGA-Sec codon. In contrast, deletion of the PSL increased Sec incorporation. This effect was reversed when the PSL was replaced with other stem-loops or an unstructured sequence, suggesting that the PSL does not play an active role in Sec insertion. Additional studies revealed that the position of the SPUR relative to the UGA-Sec codon is important for optimal UGA recoding. Our identification of the SPUR element in the SelS 3' UTR reveals a more complex regulation of Sec incorporation than previously realized.


Asunto(s)
Bioensayo , Codón de Terminación/metabolismo , Secuencias Invertidas Repetidas , Terminación de la Cadena Péptídica Traduccional , Selenoproteínas/biosíntesis , Regiones no Traducidas 3' , Animales , Línea Celular Tumoral , Codón de Terminación/química , Secuencia Conservada , Células HEK293 , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Espectrometría de Masas , Conformación de Ácido Nucleico , Mutación Puntual , Ratas , Selenocisteína/química , Selenocisteína/metabolismo , Selenoproteínas/genética
3.
J Biol Chem ; 291(46): 24036-24040, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27645994

RESUMEN

The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.


Asunto(s)
Selenoproteínas/clasificación , Selenoproteínas/genética , Humanos , Terminología como Asunto
4.
Mol Cell ; 35(4): 479-89, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19716792

RESUMEN

The synthesis of selenoproteins requires the translational recoding of the UGA stop codon as selenocysteine. During selenium deficiency, there is a hierarchy of selenoprotein expression, with certain selenoproteins synthesized at the expense of others. The mechanism by which the limiting selenocysteine incorporation machinery is preferentially utilized to maintain the expression of essential selenoproteins has not been elucidated. Here we demonstrate that eukaryotic initiation factor 4a3 (eIF4a3) is involved in the translational control of a subset of selenoproteins. The interaction of eIF4a3 with the selenoprotein mRNA prevents the binding of SECIS binding protein 2, which is required for selenocysteine insertion, thereby inhibiting the synthesis of the selenoprotein. Furthermore, the expression of eIF4a3 is regulated in response to selenium. Based on knockdown and overexpression studies, eIF4a3 is necessary and sufficient to mediate selective translational repression in cells. Our results support a model in which eIF4a3 links selenium status with differential selenoprotein expression.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Modificación Traduccional de las Proteínas , Proteínas de Unión al ARN/metabolismo , Selenio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/biosíntesis , Regiones no Traducidas 3' , Animales , Sitios de Unión , Línea Celular Tumoral , Codón de Terminación , ARN Helicasas DEAD-box/genética , Inducción Enzimática , Factor 4A Eucariótico de Iniciación/genética , Glutatión Peroxidasa/biosíntesis , Homeostasis , Peso Molecular , Conformación de Ácido Nucleico , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Mensajero/química , Ratas , Selenio/deficiencia , Proteínas de Unión al Selenio/metabolismo , Selenoproteínas/genética , Transfección , Glutatión Peroxidasa GPX1
5.
Biochem J ; 462(1): 67-75, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24844465

RESUMEN

Secisbp2 [SECIS (selenocysteine insertion sequence)-binding protein 2] binds to SECIS elements located in the 3'-UTR region of eukaryotic selenoprotein mRNAs. It facilitates the incorporation of the rare amino acid selenocysteine in response to UGA codons. Inactivation of Secisbp2 in hepatocytes greatly reduced selenoprotein levels. Neuron-specific inactivation of Secisbp2 (CamK-Cre; Secisbp2fl/fl) reduced cerebral expression of selenoproteins to a lesser extent than inactivation of tRNA[Ser]Sec. This allowed us to study the development of cortical PV (parvalbumin)+ interneurons, which are completely lost in tRNA[Ser]Sec mutants. PV+ interneuron density was reduced in the somatosensory cortex, hippocampus and striatum. In situ hybridization for Gad67 (glutamic acid decarboxylase 67) confirmed the reduction of GABAergic (where GABA is γ-aminobutyric acid) interneurons. Because of the obvious movement phenotype involving a broad dystonic gait, we suspected basal ganglia dysfunction. Tyrosine hydroxylase expression was normal in substantia nigra neurons and their striatal terminals. However the densities of striatal PV+ and Gad67+ neurons were decreased by 65% and 49% respectively. Likewise, the density of striatal cholinergic neurons was reduced by 68%. Our observations demonstrate that several classes of striatal interneurons depend on selenoprotein expression. These findings may offer an explanation for the movement phenotype of selenoprotein P-deficient mice and the movement disorder and mental retardation described in a patient carrying SECISBP2 mutations.


Asunto(s)
Cuerpo Estriado/metabolismo , Interneuronas/fisiología , Proteínas de Unión al ARN/genética , Selenoproteínas/biosíntesis , Animales , Glutamato Descarboxilasa/biosíntesis , Ratones , Trastornos del Movimiento/genética , Parvalbúminas/biosíntesis , Selenocisteína/metabolismo , Corteza Somatosensorial/metabolismo
6.
Pediatr Nurs ; 41(2): 59-63, 88, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26292452

RESUMEN

Legislation exists regulating adolescents' use of tanning beds; however, the rate at which adolescents use these devices has not been reduced. The purpose of this study was to provide an analysis of indoor tanning bed legislation in the United States specifically related to legal issues and parental consent along with enforcement of current laws. The investigators collected data via review of state health department websites or telephone interviews of identified contacts for all 50 states. Findings reveal wide variation in legislation related to adolescents' access to tanning devices and enforcement of violation of legal statutes. Nurses and other health care professionals can play key roles in educating families and adolescents to the dangers from the use of tanning beds along with being role models for proper skin protective behaviors. In addition, nurses should become advocates by supporting legislative efforts that ban tanning salons for all minors, with the long-term goal of reducing skin cancer caused by ultraviolet radiation (UVR) exposure from the use of tanning salons today.


Asunto(s)
Técnicas Cosméticas/efectos adversos , Rol de la Enfermera , Enfermería Pediátrica , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/prevención & control , Baño de Sol/legislación & jurisprudencia , Rayos Ultravioleta/efectos adversos , Adolescente , Conducta del Adolescente , Estudios Transversales , Regulación Gubernamental , Humanos , Incidencia , Riesgo , Neoplasias Cutáneas/epidemiología , Estados Unidos/epidemiología
7.
RNA Biol ; 11(11): 1402-13, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25692238

RESUMEN

Selenium, a micronutrient, is primarily incorporated into human physiology as selenocysteine (Sec). The 25 Sec-containing proteins in humans are known as selenoproteins. Their synthesis depends on the translational recoding of the UGA stop codon to allow Sec insertion. This requires a stem-loop structure in the 3' untranslated region of eukaryotic mRNAs known as the Selenocysteine Insertion Sequence (SECIS). The SECIS is recognized by SECIS-binding protein 2 (SBP2) and this RNA:protein interaction is essential for UGA recoding to occur. Genetic mutations cause SBP2 deficiency in humans, resulting in a broad set of symptoms due to differential effects on individual selenoproteins. Progress on understanding the different phenotypes requires developing robust tools to investigate SBP2 structure and function. In this study we demonstrate that SBP2 protein produced by in vitro translation discriminates among SECIS elements in a competitive UGA recoding assay and has a much higher specific activity than bacterially expressed protein. We also show that a purified recombinant protein encompassing amino acids 517-777 of SBP2 binds to SECIS elements with high affinity and selectivity. The affinity of the SBP2:SECIS interaction correlated with the ability of a SECIS to compete for UGA recoding activity in vitro. The identification of a 250 amino acid sequence that mediates specific, selective SECIS-binding will facilitate future structural studies of the SBP2:SECIS complex. Finally, we identify an evolutionarily conserved core cysteine signature in SBP2 sequences from the vertebrate lineage. Mutation of multiple, but not single, cysteines impaired SECIS-binding but did not affect protein localization in cells.


Asunto(s)
Regiones no Traducidas 3'/genética , Codón de Terminación/genética , Proteínas de Unión al ARN/genética , Selenocisteína/genética , Selenoproteínas/genética , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Cisteína/genética , Cisteína/metabolismo , Electroforesis en Gel de Poliacrilamida , Regulación de la Expresión Génica , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Unión Proteica , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratas , Proteínas Recombinantes/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Homología de Secuencia de Aminoácido
8.
BMC Mol Biol ; 14: 12, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23777426

RESUMEN

BACKGROUND: Ribosomal protein L30 belongs to the L7Ae family of RNA-binding proteins, which recognize diverse targets. L30 binds to kink-turn motifs in the 28S ribosomal RNA, L30 pre-mRNA, and mature L30 mRNA. L30 has a noncanonical function as a component of the UGA recoding machinery that incorporates selenocysteine (Sec) into selenoproteins during translation. L30 binds to a putative kink-turn motif in the Sec Insertion Sequence (SECIS) element in the 3' UTR of mammalian selenoprotein mRNAs. The SECIS also interacts with SECIS-binding protein 2 (SBP2), an essential factor for Sec incorporation. Previous studies showed that L30 and SBP2 compete for binding to the SECIS in vitro. The SBP2:SECIS interaction has been characterized but much less is known about how L30 recognizes the SECIS. RESULTS: Here we use enzymatic RNA footprinting to define the L30 binding site on the SECIS. Like SBP2, L30 protects nucleotides in the 5' side of the internal loop, the 5' side of the lower helix, and the SECIS core, including the GA tandem base pairs that are predicted to form a kink-turn. However, L30 has additional determinants for binding as it also protects nucleotides in the 3' side of the internal loop, which are not protected by SBP2. In support of the competitive binding model, we found that purified L30 repressed UGA recoding in an in vitro translation system, and that this inhibition was rescued by SBP2. To define the amino acid requirements for SECIS-binding, site-specific mutations in L30 were generated based on published structural studies of this protein in a complex with its canonical target, the L30 pre-mRNA. We identified point mutations that selectively inhibited binding of L30 to the SECIS, to the L30 pre-mRNA, or both RNAs, suggesting that there are subtle differences in how L30 interacts with the two targets. CONCLUSIONS: This study establishes that L30 and SBP2 bind to overlapping but non-identical sites on the SECIS. The amino acid requirements for the interaction of L30 with the SECIS differ from those that mediate binding to the L30 pre-mRNA. Our results provide insight into how L7Ae family members recognize their cognate RNAs.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Ribosómicas/metabolismo , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ratas , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Selenoproteínas/genética , Selenoproteínas/metabolismo
9.
Nucleic Acids Res ; 39(17): 7730-9, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21685449

RESUMEN

eIF4a3, a DEAD-box protein family member, is a component of the exon junction complex which assembles on spliced mRNAs. The protein also acts as a transcript-selective translational repressor of selenoprotein synthesis during selenium deficiency. Selenocysteine (Sec) incorporation into selenoproteins requires a Sec Insertion Sequence (SECIS) element in the 3' untranslated region. During selenium deficiency, eIF4a3 binds SECIS elements from non-essential selenoproteins, preventing Sec insertion. We identified a molecular signature for the eIF4a3-SECIS interaction using RNA gel shifts, surface plasmon resonance and enzymatic foot printing. Our results support a two-site interaction model, where eIF4a3 binds the internal and apical loops of the SECIS. Additionally, the stability of the complex requires uridine in the SECIS core. In terms of protein requirements, the two globular domains of eIF4a3, which are connected by a linker, are both critical for SECIS binding. Compared to full-length eIF4a3, the two domains in trans bind with a lower association rate but notably, the uridine is no longer important for complex stability. These results provide insight into how eIF4a3 discriminates among SECIS elements and represses translation.


Asunto(s)
Regiones no Traducidas 3' , ARN Helicasas DEAD-box/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Selenoproteínas/genética , Animales , Sitios de Unión , ARN Helicasas DEAD-box/química , Conformación de Ácido Nucleico , Factores de Iniciación de Péptidos/química , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/química , ARN Mensajero/metabolismo , Ratas , Selenoproteínas/biosíntesis , Uridina/química
10.
Nucleic Acids Res ; 38(14): 4807-20, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20385601

RESUMEN

Selenium, an essential trace element, is incorporated into selenoproteins as selenocysteine (Sec), the 21st amino acid. In order to synthesize selenoproteins, a translational reprogramming event must occur since Sec is encoded by the UGA stop codon. In mammals, the recoding of UGA as Sec depends on the selenocysteine insertion sequence (SECIS) element, a stem-loop structure in the 3' untranslated region of the transcript. The SECIS acts as a platform for RNA-binding proteins, which mediate or regulate the recoding mechanism. Using UV crosslinking, we identified a 110 kDa protein, which binds with high affinity to SECIS elements from a subset of selenoprotein mRNAs. The crosslinking activity was purified by RNA affinity chromatography and identified as nucleolin by mass spectrometry analysis. In vitro binding assays showed that purified nucleolin discriminates among SECIS elements in the absence of other factors. Based on siRNA experiments, nucleolin is required for the optimal expression of certain selenoproteins. There was a good correlation between the affinity of nucleolin for a SECIS and its effect on selenoprotein expression. As selenoprotein transcript levels and localization did not change in siRNA-treated cells, our results suggest that nucleolin selectively enhances the expression of a subset of selenoproteins at the translational level.


Asunto(s)
Regiones no Traducidas 3' , Regulación de la Expresión Génica , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Selenoproteínas/genética , Animales , Línea Celular Tumoral , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/aislamiento & purificación , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/aislamiento & purificación , Ratas , Selenoproteínas/metabolismo , Nucleolina
11.
Nucleic Acids Res ; 37(17): 5868-80, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19651878

RESUMEN

The selenocysteine insertion sequence (SECIS) element directs the translational recoding of UGA as selenocysteine. In eukaryotes, the SECIS is located downstream of the UGA codon in the 3'-UTR of the selenoprotein mRNA. Despite poor sequence conservation, all SECIS elements form a similar stem-loop structure containing a putative kink-turn motif. We functionally characterized the 26 SECIS elements encoded in the human genome. Surprisingly, the SECIS elements displayed a wide range of UGA recoding activities, spanning several 1000-fold in vivo and several 100-fold in vitro. The difference in activity between a representative strong and weak SECIS element was not explained by differential binding affinity of SECIS binding Protein 2, a limiting factor for selenocysteine incorporation. Using chimeric SECIS molecules, we identified the internal loop and helix 2, which flank the kink-turn motif, as critical determinants of UGA recoding activity. The simultaneous presence of a GC base pair in helix 2 and a U in the 5'-side of the internal loop was a statistically significant predictor of weak recoding activity. Thus, the SECIS contains intrinsic information that modulates selenocysteine incorporation efficiency.


Asunto(s)
Regiones no Traducidas 3'/química , Codón de Terminación , Biosíntesis de Proteínas , Selenocisteína/metabolismo , Regiones no Traducidas 3'/metabolismo , Secuencia de Bases , Línea Celular , Clonación Molecular , Genoma Humano , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN
12.
Nat Struct Mol Biol ; 12(5): 408-16, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15821744

RESUMEN

The translational recoding of UGA as selenocysteine (Sec) is directed by a SECIS element in the 3' untranslated region (UTR) of eukaryotic selenoprotein mRNAs. The selenocysteine insertion sequence (SECIS) contains two essential tandem sheared G.A pairs that bind SECIS-binding protein 2 (SBP2), which recruits a selenocysteine-specific elongation factor and Sec-tRNA(Sec) to the ribosome. Here we show that ribosomal protein L30 is a component of the eukaryotic selenocysteine recoding machinery. L30 binds SECIS elements in vitro and in vivo, stimulates UGA recoding in transfected cells and competes with SBP2 for SECIS binding. Magnesium, known to induce a kink-turn in RNAs that contain two tandem G.A pairs, decreases the SBP2-SECIS complex in favor of the L30-SECIS interaction. We propose a model in which SBP2 and L30 carry out different functions in the UGA recoding mechanism, with the SECIS acting as a molecular switch upon protein binding.


Asunto(s)
Codón/genética , Células Eucariotas/metabolismo , Proteínas Ribosómicas/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Regiones no Traducidas 3'/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Codón de Terminación/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratas , Proteínas Ribosómicas/química , Proteínas Ribosómicas/aislamiento & purificación , Alineación de Secuencia
13.
RNA Biol ; 6(1): 73-83, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19106619

RESUMEN

The human selenoproteome is composed of approximately 25 selenoproteins, which cotranslationally incorporate selenocysteine, the 21st amino acid. Selenoprotein expression requires an unusual translation mechanism, as selenocysteine is encoded by the UGA stop codon. SECIS-binding protein 2 (SBP2) is an essential component of the selenocysteine insertion machinery. SBP2 is also the only factor known to differentiate among selenoprotein mRNAs, thereby modulating the relative expression of the individual selenoproteins. Here, we show that expression of SBP2 protein varies widely across tissues and cell types examined, despite previous observations of only modest variation in SBP2 mRNA levels. This discrepancy between SBP2 mRNA and protein levels implies translational regulation, which is often mediated via untranslated regions (UTRs) in regulated transcripts. We have identified multiple sequences in the SBP2 3' UTR that are highly conserved. The proximal short conserved region is GU rich and was subsequently shown to be a binding site for CUG-BP1. The distal half of the 3' UTR is largely conserved, and multiple proteins interact with this region. One of these proteins was identified as HuR. Both CUG-BP1 and HuR are members of the Turnover and Translation Regulatory RNA-Binding Protein family (TTR-RBP). Members of this protein family are linked by the common ability to rapidly effect gene expression through alterations in the stability and translatability of target mRNAs. The identification of CUG-BP1 and HuR as factors that bind to the SBP2 3' UTR suggests that TTR-RBPs play a role in the regulation of SBP2, which then dictates the expression of the selenoproteome.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Unión al ARN/química , Regiones no Traducidas 3' , Secuencias de Aminoácidos , Animales , Núcleo Celular/metabolismo , Codón de Terminación , Citoplasma/metabolismo , Caballos , Humanos , Mutación , Proteoma , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Ratas
14.
Methods Mol Biol ; 1661: 61-71, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28917037

RESUMEN

This chapter explains the use of RNase-assisted RNA chromatography. RNA affinity chromatography is a powerful technique that is used to isolate and identify proteins that bind to a specific RNA ligand. The RNA of interest is attached to beads before protein lysates are passed over the column. In traditional RNA chromatography, bound proteins are eluted with high salt or harsh detergent, which can also release proteins that are nonspecifically bound to the beads. To avoid this, a new method was developed in which RNases are used to cleave RNA from the beads, releasing only RNA binding proteins (RBPs) and leaving behind proteins that are bound to the beads (Michlewski and Caceres, RNA 16(8):1673-1678, 2010). This chapter will describe the isolation of proteins that bind specifically to the distal region of the Selenoprotein S 3' untranslated region (3' UTR).


Asunto(s)
Regiones no Traducidas 3' , Proteínas de Unión al ARN , Selenoproteínas/genética , Cromatografía de Afinidad/métodos , Humanos , Técnicas In Vitro , Células Jurkat , Espectrometría de Masas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Unión al ARN/metabolismo , Selenoproteínas/química , Transcripción Genética
15.
Methods Mol Biol ; 265: 239-49, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15103077

RESUMEN

This chapter describes the technique of RNA affinity chromatography, which is a powerful approach for isolating RNA-binding proteins. This method takes advantage of the fact that sequence-specific RNA-binding proteins often bind their targets with high affinity. Here we outline a protocol for purifying Apobec-1 complementation factor (ACF), the RNA-binding subunit of the apolipoprotein-B (apo-B) mRNA-editing enzyme. ACF was purified using synthetic wild-type and mutant apo-B RNAs, which were coupled to cyanogen bromide (CNBr)- activated Sepharose. The methods are plasmid construction for in vitro transcription, affinity chromatography column preparation, protein purification by RNA affinity chromatography, and analysis of the purified protein.


Asunto(s)
Proteínas Portadoras/aislamiento & purificación , Citosina , Edición de ARN/genética , ARN Mensajero/metabolismo , Uracilo , Proteínas Portadoras/genética , Cromatografía de Afinidad/métodos , Cromatografía en Gel/métodos , ADN/genética , ADN/aislamiento & purificación , Plásmidos , ARN Mensajero/aislamiento & purificación , Moldes Genéticos
16.
Antioxid Redox Signal ; 21(6): 835-49, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-24274065

RESUMEN

AIMS: The selenocysteine insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements located in the 3'-untranslated region of eukaryotic selenoprotein mRNAs. Selenoproteins contain the rare amino acid selenocysteine (Sec). Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display myopathy, hearing impairment, male infertility, increased photosensitivity, mental retardation, and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. RESULTS: Unlike tRNA[Ser]Sec-deficient embryos, homozygous Secisbp2-deleted embryos implant, but fail before gastrulation. Heterozygous inactivation of Secisbp2 reduced the amount of selenoprotein expressed, but did not affect the thyroid hormone axis or growth. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression. Unexpectedly, the loss of Secisbp2 reduced the abundance of many, but not all, selenoprotein mRNAs. Transcript-specific and gender-selective effects on selenoprotein mRNA abundance were greater in Secisbp2-deficient hepatocytes than in tRNA[Ser]Sec-deficient cells. Despite the massive reduction of Dio1 and Sepp1 mRNAs, significantly more corresponding protein was detected in primary hepatocytes lacking Secisbp2 than in cells lacking tRNA[Ser]Sec. Regarding selenoprotein expression, compensatory nuclear factor, erythroid-derived, like 2 (Nrf2)-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2-deficient than in tRNA[Ser]Sec-deficient mice. INNOVATION: We report the first Secisbp2 mutant mouse models. The conditional mutants provide a model for analyzing Secisbp2 function in organs not accessible in patients. CONCLUSION: In hepatocyte-specific conditional mouse models, Secisbp2 gene inactivation is less detrimental than tRNA[Ser]Sec inactivation. A role of Secisbp2 in stabilizing selenoprotein mRNAs in vivo was uncovered.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Selenoproteínas/genética , Alelos , Empalme Alternativo , Animales , Femenino , Orden Génico , Silenciador del Gen , Marcación de Gen , Sitios Genéticos , Genotipo , Hepatocitos/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , ARN Mensajero/genética
17.
PLoS One ; 8(4): e62102, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23614019

RESUMEN

Selenoprotein S (SelS) is a 189 amino acid trans-membrane protein that plays an important yet undefined role in the unfolded protein response. It has been proposed that SelS may function as a reductase, with the penultimate selenocysteine (Sec(188)) residue participating in a selenosulfide bond with cysteine (Cys(174)). Cotranslational incorporation of Sec into SelS depends on the recoding of the UGA codon, which requires a Selenocysteine Insertion Sequence (SECIS) element in the 3'UTR of the transcript. Here we identify multiple mechanisms that regulate the expression of SelS. The human SelS gene encodes two transcripts (variants 1 and 2), which differ in their 3'UTR sequences due to an alternative splicing event that removes the SECIS element from the variant 1 transcript. Both transcripts are widely expressed in human cell lines, with the SECIS-containing variant 2 mRNA being more abundant. In vitro experiments demonstrate that the variant 1 3'UTR does not allow readthrough of the UGA/Sec codon. Thus, this transcript would produce a truncated protein that does not contain Sec and cannot make the selenosulfide bond. While the variant 2 3'UTR does support Sec insertion, its activity is weak. Bioinformatic analysis revealed two highly conserved stem-loop structures, one in the proximal part of the variant 2 3'UTR and the other immediately downstream of the SECIS element. The proximal stem-loop promotes Sec insertion in the native context but not when positioned far from the UGA/Sec codon in a heterologous mRNA. In contrast, the 140 nucleotides downstream of the SECIS element inhibit Sec insertion. We also show that endogenous SelS is enriched at perinuclear speckles, in addition to its known localization in the endoplasmic reticulum. Our results suggest the expression of endogenous SelS is more complex than previously appreciated, which has implications for past and future studies on the function of this protein.


Asunto(s)
Regiones no Traducidas 3'/genética , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Línea Celular , Codón de Terminación/genética , Humanos , ARN Mensajero/genética , Selenoproteínas/química
18.
J Clin Endocrinol Metab ; 95(8): 4066-71, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20501692

RESUMEN

CONTEXT: Selenoproteins are essential for life, and their biosynthesis requires the incorporation of the rare amino acid selenocysteine (Sec) in a process mediated by the Sec insertion sequence-binding protein 2 (SBP2). Although SBP2 is considered a rate-limiting factor mediating Sec incorporation, there has been little evidence so far linking SBP2 dysfunction to widespread selenoprotein-related disease. OBJECTIVE: The objective of the study was to report the discovery of novel truncation mutations in the SBP2 gene (R120X/R770X) in a female adolescent and the clinical consequences of the combined deficiency of selenoproteins. SUBJECTS AND METHODS: A 12-yr-old girl who presented with a syndrome of abnormal thyroid hormone metabolism, delayed bone maturation, congenital myopathy, and impaired mental and motor coordination development and her family were studied. The coding region of the SBP2 gene was analyzed by sequencing, and gel shift assays were performed to address the in vitro binding properties of the mutant SBP2 protein. RESULTS: Serum levels of selenium and glutathione peroxidase in the proband were reduced, and selenoprotein P levels were undetectable. DNA sequencing of the SBP2 gene revealed a compound heterozygous mutation (R120X/R770X). The R120X mutation disrupted all functional motifs and the R770X inhibited the binding of SBP2 to Sec insertion sequence elements. Interestingly, selenium supplementation normalized serum selenium and glutathione peroxidase but not selenoprotein P levels and did not restore thyroid hormone metabolism dysfunction. CONCLUSIONS: This distinctive phenotype can only be explained by the combined deficiency of functionally important selenoproteins and pinpoints the clinical relevance of selenoproteins and selenium economy in human development.


Asunto(s)
Proteínas de Unión al ARN/genética , Hormonas Tiroideas/metabolismo , Niño , Codón sin Sentido , Femenino , Pruebas Genéticas , Glutatión Peroxidasa/sangre , Humanos , Mutación , Fenotipo , Proteínas de Unión al ARN/metabolismo , Selenio/sangre , Selenoproteína P/sangre
20.
J Biol Chem ; 282(48): 34653-62, 2007 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-17901054

RESUMEN

The expression of selenoproteins requires the translational recoding of the UGA stop codon to selenocysteine. In eukaryotes, this requires an RNA stem loop structure in the 3'-untranslated region, termed a selenocysteine insertion sequence (SECIS), and SECIS-binding protein 2 (SBP2). This study implicates SBP2 in dictating the hierarchy of selenoprotein expression, because it is the first to show that SBP2 distinguishes between SECIS elements in vitro. Using RNA electrophoretic mobility shift assays, we demonstrate that a naturally occurring mutation in SBP2, which correlates with abnormal thyroid hormone function in humans, lies within a novel, bipartite RNA-binding domain. This mutation alters the RNA binding affinity of SBP2 such that it no longer stably interacts with a subset of SECIS elements. Assays performed under competitive conditions to mimic intracellular conditions suggest that the differential affinity of SBP2 for various SECIS elements will determine the expression pattern of the selenoproteome. We hypothesize that the selective loss of a subset of selenoproteins, including some involved in thyroid hormone homeostasis, is responsible for the abnormal thyroid hormone metabolism previously observed in the affected individuals.


Asunto(s)
Mutación , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , ARN/química , Selenocisteína/química , Hormonas Tiroideas/metabolismo , Secuencia de Aminoácidos , Animales , Cartilla de ADN/química , Humanos , Datos de Secuencia Molecular , Biosíntesis de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteoma , Ratas , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA