Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Ther ; 30(8): 2722-2745, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35524407

RESUMEN

Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously induced change in developmentally imprinted excitatory neurotransmitter phenotypes of these neurons to inhibitory has not yet been achieved. Here, we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-aminobutyric acid) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) that persisted for a minimum of 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (e.g., sedation, motor weakness, loss of normal sensation) were seen between 2 and 13 months post-treatment in naive adult mice, pigs, and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord or peripheral nerve injury-induced neuropathic pain.


Asunto(s)
Neuralgia , Nociceptores , Animales , Técnicas de Transferencia de Gen , Ratones , Neuralgia/etiología , Neuralgia/terapia , Células del Asta Posterior , Médula Espinal , Asta Dorsal de la Médula Espinal , Porcinos
2.
Cell Transplant ; 32: 9636897221107009, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37088987

RESUMEN

One of the challenges in clinical translation of cell-replacement therapies is the definition of optimal cell generation and storage/recovery protocols which would permit a rapid preparation of cell-treatment products for patient administration. Besides, the availability of injection devices that are simple to use is critical for potential future dissemination of any spinally targeted cell-replacement therapy into general medical practice. Here, we compared the engraftment properties of established human-induced pluripotent stem cells (hiPSCs)-derived neural precursor cell (NPCs) line once cells were harvested fresh from the cell culture or previously frozen and then grafted into striata or spinal cord of the immunodeficient rat. A newly developed human spinal injection device equipped with a spinal cord pulsation-cancelation magnetic needle was also tested for its safety in an adult immunosuppressed pig. Previously frozen NPCs showed similar post-grafting survival and differentiation profile as was seen for freshly harvested cells. Testing of human injection device showed acceptable safety with no detectable surgical procedure or spinal NPCs injection-related side effects.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Inyecciones Espinales , Células-Madre Neurales , Trasplante de Células Madre , Adulto , Animales , Humanos , Ratas , Diferenciación Celular/fisiología , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Vectores Genéticos/genética , Supervivencia de Injerto/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Inyecciones Espinales/efectos adversos , Inyecciones Espinales/instrumentación , Inyecciones Espinales/métodos , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Virus Sendai , Manejo de Especímenes/métodos , Trasplante de Células Madre/efectos adversos , Trasplante de Células Madre/instrumentación , Trasplante de Células Madre/métodos , Porcinos , Recolección de Tejidos y Órganos/métodos , Resultado del Tratamiento , Encéfalo , Médula Espinal
3.
STAR Protoc ; 3(1): 101130, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35146446

RESUMEN

microRNAs (miRNAs) have unique gene regulatory effects in different neuronal subpopulations. Here, we describe a protocol to identify neuronal subtype-specific effects of a miRNA in murine motor neuron subpopulations. We detail the preparation of primary mouse spinal tissue for single cell RNA sequencing and bioinformatics analyses of pseudobulk expression data. This protocol applies differential gene expression testing approaches to identify miRNA target networks in heterogeneous neuronal subpopulations that cannot otherwise be captured by bulk RNA sequencing approaches. For complete details on the use and execution of this protocol, please refer to Amin et al. (2021).


Asunto(s)
MicroARNs , Animales , Biología Computacional/métodos , Regulación de la Expresión Génica , Ratones , MicroARNs/genética , Neuronas , Análisis de Secuencia de ARN
4.
Science ; 372(6540): 385-393, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33888637

RESUMEN

Motor and sensory functions of the spinal cord are mediated by populations of cardinal neurons arising from separate progenitor lineages. However, each cardinal class is composed of multiple neuronal types with distinct molecular, anatomical, and physiological features, and there is not a unifying logic that systematically accounts for this diversity. We reasoned that the expansion of new neuronal types occurred in a stepwise manner analogous to animal speciation, and we explored this by defining transcriptomic relationships using a top-down approach. We uncovered orderly genetic tiers that sequentially divide groups of neurons by their motor-sensory, local-long range, and excitatory-inhibitory features. The genetic signatures defining neuronal projections were tied to neuronal birth date and conserved across cardinal classes. Thus, the intersection of cardinal class with projection markers provides a unifying taxonomic solution for systematically identifying distinct functional subsets.


Asunto(s)
Vías Nerviosas , Neuronas/fisiología , Médula Espinal/citología , Transcriptoma , Animales , Médula Cervical/citología , Femenino , Masculino , Ratones , Neuronas Motoras/fisiología , Propiocepción , RNA-Seq , Células Receptoras Sensoriales/fisiología , Análisis de la Célula Individual , Análisis Espacial , Médula Espinal/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Nat Med ; 26(1): 118-130, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873312

RESUMEN

Gene silencing with virally delivered shRNA represents a promising approach for treatment of inherited neurodegenerative disorders. In the present study we develop a subpial technique, which we show in adult animals successfully delivers adeno-associated virus (AAV) throughout the cervical, thoracic and lumbar spinal cord, as well as brain motor centers. One-time injection at cervical and lumbar levels just before disease onset in mice expressing a familial amyotrophic lateral sclerosis (ALS)-causing mutant SOD1 produces long-term suppression of motoneuron disease, including near-complete preservation of spinal α-motoneurons and muscle innervation. Treatment after disease onset potently blocks progression of disease and further α-motoneuron degeneration. A single subpial AAV9 injection in adult pigs or non-human primates using a newly designed device produces homogeneous delivery throughout the cervical spinal cord white and gray matter and brain motor centers. Thus, spinal subpial delivery in adult animals is highly effective for AAV-mediated gene delivery throughout the spinal cord and supraspinal motor centers.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Dependovirus/metabolismo , Silenciador del Gen , Técnicas de Transferencia de Gen , Neuronas Motoras/patología , Degeneración Nerviosa/terapia , Piamadre/patología , Médula Espinal/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Atrofia , Progresión de la Enfermedad , Potenciales Evocados Motores , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación/patología , Interneuronas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Desarrollo de Músculos , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Piamadre/fisiopatología , Primates , Pliegue de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/administración & dosificación , Médula Espinal/diagnóstico por imagen , Médula Espinal/fisiopatología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Porcinos
6.
Neuron ; 102(3): 602-620.e9, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30902550

RESUMEN

The rich functional diversity of the nervous system is founded in the specific connectivity of the underlying neural circuitry. Neurons are often preprogrammed to respond to multiple axon guidance signals because they use sequential guideposts along their pathways, but this necessitates a strict spatiotemporal regulation of intracellular signaling to ensure the cues are detected in the correct order. We performed a mouse mutagenesis screen and identified the Rho GTPase antagonist p190RhoGAP as a critical regulator of motor axon guidance. Rather than acting as a compulsory signal relay, p190RhoGAP uses a non-conventional GAP-independent mode to transiently suppress attraction to Netrin-1 while motor axons exit the spinal cord. Once in the periphery, a subset of axons requires p190RhoGAP-mediated inhibition of Rho signaling to target specific muscles. Thus, the multifunctional activity of p190RhoGAP emerges from its modular design. Our findings reveal a cell-intrinsic gate that filters conflicting signals, establishing temporal windows of signal detection.


Asunto(s)
Orientación del Axón/genética , Receptor DCC/metabolismo , Proteínas Activadoras de GTPasa/genética , Neuronas Motoras/metabolismo , Músculo Esquelético/inervación , Netrina-1/metabolismo , Proteínas Represoras/genética , Animales , Células del Asta Anterior/metabolismo , Ratones , Células Madre Embrionarias de Ratones , Mutación
7.
Stem Cell Res Ther ; 10(1): 83, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30867054

RESUMEN

BACKGROUND: A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. METHODS: Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. RESULTS: In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2-6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. CONCLUSIONS: These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.


Asunto(s)
Citometría de Flujo , Células Madre Multipotentes/citología , Células-Madre Neurales/citología , Línea Celular , Humanos
8.
Nat Genet ; 51(12): 1691-1701, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740836

RESUMEN

In the mammalian genome, the clustered protocadherin (cPCDH) locus provides a paradigm for stochastic gene expression with the potential to generate a unique cPCDH combination in every neuron. Here we report a chromatin-based mechanism that emerges during the transition from the naive to the primed states of cell pluripotency and reduces, by orders of magnitude, the combinatorial potential in the human cPCDH locus. This mechanism selectively increases the frequency of stochastic selection of a small subset of cPCDH genes after neuronal differentiation in monolayers, 10-month-old cortical organoids and engrafted cells in the spinal cords of rats. Signs of these frequent selections can be observed in the brain throughout fetal development and disappear after birth, except in conditions of delayed maturation such as Down's syndrome. We therefore propose that a pattern of limited cPCDH-gene expression diversity is maintained while human neurons still retain fetal-like levels of maturation.


Asunto(s)
Cadherinas/genética , Cromatina/genética , Síndrome de Down/patología , Células Madre Pluripotentes Inducidas/citología , Neuronas/fisiología , Adulto , Animales , Astrocitos/citología , Astrocitos/fisiología , Encéfalo/citología , Encéfalo/embriología , Diferenciación Celular , Línea Celular , Síndrome de Down/genética , Regulación de la Expresión Génica , Histonas/genética , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Persona de Mediana Edad , Neuronas/citología , Regiones Promotoras Genéticas , Ratas , Análisis de la Célula Individual , Médula Espinal/citología , Médula Espinal/trasplante , Trasplante Heterólogo
9.
Neuron ; 97(4): 869-884.e5, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29398364

RESUMEN

The spinal cord contains neural networks that enable regionally distinct motor outputs along the body axis. Nevertheless, it remains unclear how segment-specific motor computations are processed because the cardinal interneuron classes that control motor neurons appear uniform at each level of the spinal cord. V2a interneurons are essential to both forelimb and hindlimb movements, and here we identify two major types that emerge during development: type I neurons marked by high Chx10 form recurrent networks with neighboring spinal neurons and type II neurons that downregulate Chx10 and project to supraspinal structures. Types I and II V2a interneurons are arrayed in counter-gradients, and this network activates different patterns of motor output at cervical and lumbar levels. Single-cell RNA sequencing (RNA-seq) revealed type I and II V2a neurons are each comprised of multiple subtypes. Our findings uncover a molecular and anatomical organization of V2a interneurons reminiscent of the orderly way motor neurons are divided into columns and pools.


Asunto(s)
Miembro Anterior/fisiología , Miembro Posterior/fisiología , Interneuronas/fisiología , Neuronas Motoras/fisiología , Movimiento , Médula Espinal/fisiología , Animales , Médula Cervical/fisiología , Femenino , Proteínas de Homeodominio/metabolismo , Interneuronas/metabolismo , Región Lumbosacra , Masculino , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Médula Espinal/embriología , Factores de Transcripción/metabolismo
10.
Sci Transl Med ; 10(440)2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743351

RESUMEN

The use of autologous (or syngeneic) cells derived from induced pluripotent stem cells (iPSCs) holds great promise for future clinical use in a wide range of diseases and injuries. It is expected that cell replacement therapies using autologous cells would forego the need for immunosuppression, otherwise required in allogeneic transplantations. However, recent studies have shown the unexpected immune rejection of undifferentiated autologous mouse iPSCs after transplantation. Whether similar immunogenic properties are maintained in iPSC-derived lineage-committed cells (such as neural precursors) is relatively unknown. We demonstrate that syngeneic porcine iPSC-derived neural precursor cell (NPC) transplantation to the spinal cord in the absence of immunosuppression is associated with long-term survival and neuronal and glial differentiation. No tumor formation was noted. Similar cell engraftment and differentiation were shown in spinally injured transiently immunosuppressed swine leukocyte antigen (SLA)-mismatched allogeneic pigs. These data demonstrate that iPSC-NPCs can be grafted into syngeneic recipients in the absence of immunosuppression and that temporary immunosuppression is sufficient to induce long-term immune tolerance after NPC engraftment into spinally injured allogeneic recipients. Collectively, our results show that iPSC-NPCs represent an alternative source of transplantable NPCs for the treatment of a variety of disorders affecting the spinal cord, including trauma, ischemia, or amyotrophic lateral sclerosis.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/trasplante , Médula Espinal/trasplante , Envejecimiento , Animales , Diferenciación Celular , Reprogramación Celular , Enfermedad Crónica , Fibroblastos/citología , Regulación de la Expresión Génica , Tolerancia Inmunológica , Inmunidad Humoral , Terapia de Inmunosupresión , Neostriado/patología , Células-Madre Neurales/citología , Neuronas/citología , Ratas , Piel/citología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Análisis de Supervivencia , Porcinos , Porcinos Enanos , Trasplante Homólogo , Trasplante Isogénico
11.
Elife ; 62017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28195039

RESUMEN

Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons.


Asunto(s)
Interneuronas/fisiología , Actividad Motora , Neuronas Motoras/fisiología , Red Nerviosa/fisiología , Médula Espinal/fisiología , Animales , Células Cultivadas , Células Madre Embrionarias/fisiología , Ratones
12.
Neuron ; 91(4): 763-776, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27478017

RESUMEN

Motor behaviors such as walking or withdrawing the limb from a painful stimulus rely upon integrative multimodal sensory circuitry to generate appropriate muscle activation patterns. Both the cellular components and the molecular mechanisms that instruct the assembly of the spinal sensorimotor system are poorly understood. Here we characterize the connectivity pattern of a sub-population of lamina V inhibitory sensory relay neurons marked during development by the nuclear matrix and DNA binding factor Satb2 (ISR(Satb2)). ISR(Satb2) neurons receive inputs from multiple streams of sensory information and relay their outputs to motor command layers of the spinal cord. Deletion of the Satb2 transcription factor from ISR(Satb2) neurons perturbs their cellular position, molecular profile, and pre- and post-synaptic connectivity. These alterations are accompanied by abnormal limb hyperflexion responses to mechanical and thermal stimuli and during walking. Thus, Satb2 is a genetic determinant that mediates proper circuit development in a core sensory-to-motor spinal network.


Asunto(s)
Extremidades/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/fisiología , Vías Nerviosas/fisiología , Dolor/fisiopatología , Células Receptoras Sensoriales/fisiología , Médula Espinal/fisiología , Factores de Transcripción/fisiología , Caminata/fisiología , Animales , Interneuronas/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Noqueados , Mutación , Reflejo/fisiología , Factores de Transcripción/genética
13.
Neuron ; 87(5): 1008-21, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26335645

RESUMEN

The coordination of multi-muscle movements originates in the circuitry that regulates the firing patterns of spinal motorneurons. Sensory neurons rely on the musculotopic organization of motorneurons to establish orderly connections, prompting us to examine whether the intraspinal circuitry that coordinates motor activity likewise uses cell position as an internal wiring reference. We generated a motorneuron-specific GCaMP6f mouse line and employed two-photon imaging to monitor the activity of lumbar motorneurons. We show that the central pattern generator neural network coordinately drives rhythmic columnar-specific motorneuron bursts at distinct phases of the locomotor cycle. Using multiple genetic strategies to perturb the subtype identity and orderly position of motorneurons, we found that neurons retained their rhythmic activity-but cell position was decoupled from the normal phasing pattern underlying flexion and extension. These findings suggest a hierarchical basis of motor circuit formation that relies on increasingly stringent matching of neuronal identity and position.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Locomoción/fisiología , Neuronas Motoras/fisiología , Red Nerviosa/fisiología , Médula Espinal/citología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Generadores de Patrones Centrales/citología , Electromiografía , Embrión de Mamíferos , Proteínas de Homeodominio/metabolismo , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Periodicidad , Estadísticas no Paramétricas , Factores de Transcripción/metabolismo
14.
Science ; 350(6267): 1525-9, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26680198

RESUMEN

Dysfunction of microRNA (miRNA) metabolism is thought to underlie diseases affecting motoneurons. One miRNA, miR-218, is abundantly and selectively expressed by developing and mature motoneurons. Here we show that mutant mice lacking miR-218 die neonatally and exhibit neuromuscular junction defects, motoneuron hyperexcitability, and progressive motoneuron cell loss, all of which are hallmarks of motoneuron diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Gene profiling reveals that miR-218 modestly represses a cohort of hundreds of genes that are neuronally enriched but are not specific to a single neuron subpopulation. Thus, the set of messenger RNAs targeted by miR-218, designated TARGET(218), defines a neuronal gene network that is selectively tuned down in motoneurons to prevent neuromuscular failure and neurodegeneration.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/fisiología , Enfermedad de la Neurona Motora/genética , Neuronas Motoras/fisiología , Enfermedades Neurodegenerativas/genética , Animales , Redes Reguladoras de Genes , Ratones , Ratones Noqueados , MicroARNs/genética , Enfermedad de la Neurona Motora/fisiopatología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Enfermedades Neurodegenerativas/patología , Médula Espinal/metabolismo , Médula Espinal/fisiopatología
15.
Nat Neurosci ; 17(4): 586-93, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24609464

RESUMEN

The rich behavioral repertoire of animals is encoded in the CNS as a set of motorneuron activation patterns, also called 'motor synergies'. However, the neurons that orchestrate these motor programs as well as their cellular properties and connectivity are poorly understood. Here we identify a population of molecularly defined motor synergy encoder (MSE) neurons in the mouse spinal cord that may represent a central node in neural pathways for voluntary and reflexive movement. This population receives direct inputs from the motor cortex and sensory pathways and, in turn, has monosynaptic outputs to spinal motorneurons. Optical stimulation of MSE neurons drove reliable patterns of activity in multiple motor groups, and we found that the evoked motor patterns varied on the basis of the rostrocaudal location of the stimulated MSE. We speculate that these neurons comprise a cellular network for encoding coordinated motor output programs.


Asunto(s)
Vías Eferentes/fisiología , Corteza Motora/fisiología , Neuronas Motoras/fisiología , Red Nerviosa/citología , Células del Asta Posterior/fisiología , Médula Espinal/fisiología , Animales , Vías Eferentes/citología , Ratones , Corteza Motora/citología , Neuronas Motoras/citología , Movimiento/fisiología , Músculo Esquelético/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Células del Asta Posterior/citología , Médula Espinal/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA