Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Immunology ; 166(1): 104-120, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35156714

RESUMEN

Natural killer (NK) cells protect against intracellular infection and cancer. These properties are exploited in oncolytic virus (OV) therapy, where antiviral responses enhance anti-tumour immunity. We have analysed the mechanism by which reovirus, an oncolytic dsRNA virus, modulates human NK cell activity. Reovirus activates NK cells in a type I interferon (IFN-I) dependent manner, inducing STAT1 and STAT4 signalling in both CD56dim and CD56bright NK cell subsets. Gene expression profiling revealed the dominance of IFN-I responses and identified induction of genes associated with NK cell cytotoxicity and cell cycle progression, with distinct responses in the CD56dim and CD56bright subsets. However, reovirus treatment inhibited IL-15 induced NK cell proliferation in an IFN-I dependent manner and was associated with reduced AKT signalling. In vivo, human CD56dim and CD56bright NK cells responded with similar kinetics to reovirus treatment, but CD56bright NK cells were transiently lost from the peripheral circulation at the peak of the IFN-I response, suggestive of their redistribution to secondary lymphoid tissue. Coupled with the direct, OV-mediated killing of tumour cells, the activation of both CD56dim and CD56bright NK cells by antiviral pathways induces a spectrum of activity that includes the NK cell-mediated killing of tumour cells and modulation of adaptive responses via the trafficking of IFN-γ expressing CD56bright NK cells to lymph nodes.


Asunto(s)
Neoplasias , Virus Oncolíticos , Antivirales , Antígeno CD56 , Humanos , Células Asesinas Naturales , Neoplasias/metabolismo , Virus Oncolíticos/genética
2.
Br J Cancer ; 119(9): 1133-1143, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30318509

RESUMEN

BACKGROUND: Human prostate cancers display numerous DNA methylation changes compared to normal tissue samples. However, definitive identification of features related to the cells' malignant status has been compromised by the predominance of cells with luminal features in prostate cancers. METHODS: We generated genome-wide DNA methylation profiles of cell subpopulations with basal or luminal features isolated from matched prostate cancer and normal tissue samples. RESULTS: Many frequent DNA methylation changes previously attributed to prostate cancers are here identified as differences between luminal and basal cells in both normal and cancer samples. We also identified changes unique to each of the two cancer subpopulations. Those specific to cancer luminal cells were associated with regulation of metabolic processes, cell proliferation and epithelial development. Within the prostate cancer TCGA dataset, these changes were able to distinguish not only cancers from normal samples, but also organ-confined cancers from those with extraprostatic extensions. Using changes present in both basal and luminal cancer cells, we derived a new 17-CpG prostate cancer signature with high predictive power in the TCGA dataset. CONCLUSIONS: This study demonstrates the importance of comparing phenotypically matched prostate cell populations from normal and cancer tissues to unmask biologically and clinically relevant DNA methylation changes.


Asunto(s)
Metilación de ADN , Fenotipo , Neoplasias de la Próstata/genética , Islas de CpG , Humanos , Masculino
3.
Bioinformatics ; 32(12): 1883-4, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27153699

RESUMEN

UNLABELLED: Many Next Generation Sequencing analyses involve the basic manipulation of input sequence data before downstream processing (e.g. searching for specific sequences, format conversion or basic file statistics). The rapidly increasing data volumes involved in NGS make any dataset manipulation a time-consuming and error-prone process. I have developed fqtools; a fast and reliable FASTQ file manipulation suite that can process the full set of valid FASTQ files, including those with multi-line sequences, whilst identifying invalid files. Fqtools is faster than similar tools, and is designed for use in automatic processing pipelines. AVAILABILITY AND IMPLEMENTATION: fqtools is open source and is available at: https://github.com/alastair-droop/fqtools SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: a.p.droop@leeds.ac.uk.


Asunto(s)
Programas Informáticos , Biometría , Secuenciación de Nucleótidos de Alto Rendimiento
4.
Bioinformatics ; 32(8): 1267-8, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26635140

RESUMEN

UNLABELLED: The Sun Grid Engine (SGE) high-performance computing batch queueing system is commonly used in bioinformatics analysis. Creating re-usable scripts for the SGE is a common challenge. The qsubsec template language and interpreter described here allow researchers to easily create generic template definitions that encapsulate a particular computational job, effectively separating the process logic from the specific run details. At submission time, the generic template is filled in with specific values. This system provides an intermediate level between simple scripting and complete workflow management tools. AVAILABILITY AND IMPLEMENTATION: Qsubsec is open-source and is available at https://github.com/alastair-droop/qsubsec CONTACT: a.p.droop@leeds.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Metodologías Computacionales , Programas Informáticos , Sistemas de Computación , Interfaz Usuario-Computador , Flujo de Trabajo
5.
Nucleic Acids Res ; 40(11): 4825-40, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22362749

RESUMEN

In the human prostate, expression of prostate-specific genes is known to be directly regulated by the androgen-induced stimulation of the androgen receptor (AR). However, less is known about the expression control of the prostate-restricted TGM4 (hTGP) gene. In the present study we demonstrate that the regulation of the hTGP gene depends mainly on retinoic acid (RA). We provide evidence that the retinoic acid receptor gamma (RAR-G) plays a major role in the regulation of the hTGP gene and that presence of the AR, but not its transcriptional transactivation activity, is critical for hTGP transcription. RA and androgen responsive elements (RARE and ARE) were mapped to the hTGP promoter by chromatin immunoprecipitation (ChIP), which also indicated that the active ARE and RARE sites were adjacent, suggesting that the antagonistic effect of androgen and RA is related to the relative position of binding sites. Publicly available AR and RAR ChIP-seq data was used to find gene potentially regulated by AR and RAR. Four of these genes (CDCA7L, CDK6, BTG1 and SAMD3) were tested for RAR and AR binding and two of them (CDCA7L and CDK6) proved to be antagonistically regulated by androgens and RA confirming that this regulation is not particular of hTGP.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Redes Reguladoras de Genes , Próstata/enzimología , Receptores Androgénicos/metabolismo , Receptores de Ácido Retinoico/metabolismo , Transglutaminasas/genética , Andrógenos/farmacología , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Metribolona/farmacología , Regiones Promotoras Genéticas , Próstata/metabolismo , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Receptores de Ácido Retinoico/fisiología , Activación Transcripcional , Transglutaminasas/metabolismo , Tretinoina/farmacología , Receptor de Ácido Retinoico gamma
6.
FEBS Open Bio ; 12(7): 1365-1387, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35472129

RESUMEN

This study aimed to elucidate the role of ELF3, an ETS family member in normal prostate growth and prostate cancer. Silencing ELF3 in both benign prostate (BPH-1) and prostate cancer (PC3) cell lines resulted in decreased colony-forming ability, inhibition of cell migration and reduced cell viability due to cell cycle arrest, establishing ELF3 as a cell cycle regulator. Increased ELF3 expression in more advanced prostate tumours was shown by immunostaining of tissue microarrays and from analysis of gene expression and genetic alteration studies. This study indicates that ELF3 functions not only as a part of normal prostate epithelial growth but also as a potential oncogene in advanced prostate cancers.


Asunto(s)
Proteínas de Unión al ADN , Próstata , Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-ets , Factores de Transcripción , Ciclo Celular/genética , Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Humanos , Masculino , Próstata/metabolismo , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factores de Transcripción/genética
7.
Prostate ; 71(15): 1646-55, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21432868

RESUMEN

BACKGROUND: Prostate development and maintenance in the adult results from an interaction of stromal and glandular components. Androgens can drive this process by direct action on the stroma. We investigated whether there was a direct link between androgens and another key regulator of stromal cells, intracellular Ca2+ ([Ca2+ ]i ). METHODS: Prostate stromal cells were freshly obtained and cultures derived from patients with benign prostatic hyperplasia. Gene expression in dihydrotestosterone treated and untreated cells was compared using Affymetrix gene expression arrays and Ca2+ regulated features were identified by Gene Ontology (GO). Changes in [Ca2+]i were determined in Fluo-4 loaded cells. Androgen regulation was confirmed by chromatin immunoprecipitaion. RESULTS: Stromal cell cultures were sorted for expression of integrin α1 ß1 , which enriched for cells expressing the androgen receptor (AR). We identified key functional categories, within the androgen-induced gene expression signature, focusing on genes involved in calcium signaling. From this analysis, stromal interaction molecule-1 (STIM1) was identified as a significantly differentially expressed gene with four relevant associated GO terms. DNA sequence analysis showed that the promoter region of STIM1 contained putative androgen response element sequences in which AR binding ability of STIM1 was confirmed. Androgens directly regulated STIM1 expression and STIM1 effects on store-operated calcium entry were inhibited by STIM1 knock-down. Reduced STIM1 expression in prostate stromal cells led to a reduction in basal Ca2+ levels, the amount of Ca2+ released by thapsigargin and a reduction in store filling following TG-induced store depletion. CONCLUSIONS: These results indicate that androgens modulate [Ca2+]i through the direct regulation of the STIM1 gene by AR binding to the STIM1 promoter.


Asunto(s)
Señalización del Calcio/fisiología , Dihidrotestosterona/farmacología , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Próstata/metabolismo , Anciano , Anciano de 80 o más Años , Western Blotting , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Persona de Mediana Edad , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Próstata/citología , Próstata/efectos de los fármacos , ARN/química , ARN/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Receptores Androgénicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células del Estroma/citología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Molécula de Interacción Estromal 1
8.
FEBS Lett ; 594(2): 209-226, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31468514

RESUMEN

Low Temperature Plasma (LTP) generates reactive oxygen and nitrogen species, causing cell death, similarly to radiation. Radiation resistance results in tumour recurrence, however mechanisms of LTP resistance are unknown. LTP was applied to patient-derived prostate epithelial cells and gene expression assessed. A typical global oxidative response (AP-1 and Nrf2 signalling) was induced, whereas Notch signalling was activated exclusively in progenitor cells. Notch inhibition induced expression of prostatic acid phosphatase (PAP), a marker of prostate epithelial cell differentiation, whilst reducing colony forming ability and preventing tumour formation. Therefore, if LTP is to be progressed as a novel treatment for prostate cancer, combination treatments should be considered in the context of cellular heterogeneity and existence of cell type-specific resistance mechanisms.


Asunto(s)
Gases em Plasma/uso terapéutico , Neoplasias de la Próstata/radioterapia , Tolerancia a Radiación/efectos de la radiación , Receptores Notch/genética , Fosfatasa Ácida/genética , Muerte Celular/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Células Epiteliales/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Masculino , Factor 2 Relacionado con NF-E2/genética , Gases em Plasma/efectos adversos , Próstata/patología , Próstata/efectos de la radiación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Tolerancia a Radiación/genética , Especies de Nitrógeno Reactivo/efectos de la radiación , Especies Reactivas de Oxígeno/efectos de la radiación , Transducción de Señal/efectos de la radiación , Células Madre/efectos de la radiación , Factor de Transcripción AP-1/genética
9.
Mol Cell Biol ; 26(16): 6016-23, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16880513

RESUMEN

The Ntr1 and Ntr2 proteins of Saccharomyces cerevisiae have been reported to interact with proteins involved in pre-mRNA splicing, but their roles in the splicing process are unknown. We show here that they associate with a postsplicing complex containing the excised intron and the spliceosomal U2, U5, and U6 snRNAs, supporting a link with a late stage in the pre-mRNA splicing process. Extract from cells that had been metabolically depleted of Ntr1 has low splicing activity and accumulates the excised intron. Also, the level of U4/U6 di-snRNP is increased but those of the free U5 and U6 snRNPs are decreased in Ntr1-depleted extract, and increased levels of U2 and decreased levels of U4 are found associated with the U5 snRNP protein Prp8. These results suggest a requirement for Ntr1 for turnover of the excised intron complex and recycling of snRNPs. Ntr1 interacts directly or indirectly with the intron release factor Prp43 and is required for its association with the excised intron. We propose that Ntr1 promotes release of excised introns from splicing complexes by acting as a spliceosome receptor or RNA-targeting factor for Prp43, possibly assisted by the Ntr2 protein.


Asunto(s)
ARN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , ARN Helicasas DEAD-box , Intrones/genética , Unión Proteica , Empalme del ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/genética
10.
Cancer Res ; 79(10): 2684-2696, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30773503

RESUMEN

The immune response to melanoma improves the survival in untreated patients and predicts the response to immune checkpoint blockade. Here, we report genetic and environmental predictors of the immune response in a large primary cutaneous melanoma cohort. Bioinformatic analysis of 703 tumor transcriptomes was used to infer immune cell infiltration and to categorize tumors into immune subgroups, which were then investigated for association with biological pathways, clinicopathologic factors, and copy number alterations. Three subgroups, with "low", "intermediate", and "high" immune signals, were identified in primary tumors and replicated in metastatic tumors. Genes in the low subgroup were enriched for cell-cycle and metabolic pathways, whereas genes in the high subgroup were enriched for IFN and NF-κB signaling. We identified high MYC expression partially driven by amplification, HLA-B downregulation, and deletion of IFNγ and NF-κB pathway genes as the regulators of immune suppression. Furthermore, we showed that cigarette smoking, a globally detrimental environmental factor, modulates immunity, reducing the survival primarily in patients with a strong immune response. Together, these analyses identify a set of factors that can be easily assessed that may serve as predictors of response to immunotherapy in patients with melanoma. SIGNIFICANCE: These findings identify novel genetic and environmental modulators of the immune response against primary cutaneous melanoma and predict their impact on patient survival.See related commentary by Anichini, p. 2457.


Asunto(s)
Melanoma/genética , Neoplasias Cutáneas/genética , Regulación hacia Abajo , Humanos , Inmunoterapia , Transducción de Señal/genética
11.
Stem Cell Reports ; 2(2): 180-8, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24527392

RESUMEN

Human epithelia are organized in a hierarchical structure, where stem cells generate terminally differentiated cells via intermediate progenitors. This two-step differentiation process is conserved in all tissues, but it is not known whether a common gene set contributes to its regulation. Here, we show that retinoic acid (RA) regulates early human prostate epithelial differentiation by activating a tightly coexpressed set of 80 genes (e.g., TMPRSS2). Response kinetics suggested that some of these genes could be direct RA targets, whereas others are probably responding indirectly to RA stimulation. Comparative bioinformatic analyses of published tissue-specific microarrays and a large-scale transcriptomic data set revealed that these 80 genes are not only RA responsive but also significantly coexpressed in many human cell systems. The same gene set preferentially responds to androgens during terminal prostate epithelial differentiation, implying a cell-type-dependent interplay between RA and tissue-specific transcription factor-mediated signaling in regulating the two steps of epithelial differentiation.


Asunto(s)
Diferenciación Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio/metabolismo , Andrógenos/metabolismo , Andrógenos/farmacología , Biomarcadores , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Humanos , Masculino , Especificidad de Órganos/genética , Próstata/citología , Próstata/metabolismo , Células Madre/citología , Células Madre/metabolismo , Tretinoina/farmacología
13.
Artif Life ; 17(4): 353-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21762021

RESUMEN

We report a study of networks constructed from mutation patterns observed in biology. These networks form evolutionary trajectories, which allow for both frequent substitution of closely related structures, and a small evolutionary distance between any two structures. These two properties define the small-world phenomenon. The mutation behavior between tokens in an evolvable artificial chemistry determines its ability to explore evolutionary space. This concept is underrepresented in previous work on string-based chemistries. We argue that small-world mutation networks will confer better exploration of the evolutionary space than either random or fully regular mutation strategies. We calculate network statistics from two data sets: amino acid substitution matrices, and codon-level single point mutations. The first class are observed data from protein alignments; while the second class is defined by the standard genetic code that is used to translate RNA into amino acids. We report a methodology for creating small-world mutation networks for artificial chemistries with arbitrary node count and connectivity. We argue that ALife systems would benefit from this approach, as it delivers a more viable exploration of evolutionary space.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Mutación , Algoritmos , Sustitución de Aminoácidos/genética , Aminoácidos/genética , Codón/genética , Código Genético/genética , Mutación Puntual/genética , ARN/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA