Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Planta ; 254(4): 65, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34487248

RESUMEN

MAIN CONCLUSION: Enhanced levels of indole-3-acetic and raised auxin to cytokinin ratios in the stem base contribute to the positive acropetal gradient in rooting capacity of leafy single-node stem cuttings of rose. Cuttings excised from different nodal positions in stock plants can differ in subsequent adventitious root formation. We investigated the involvement of the auxin-cytokinin balance in position-affected rooting of Rosa hybrida. Leafy single-node stem cuttings of two rose cultivars were excised from top versus bottom positions. Concentrations of IAA and cytokinins were monitored in the bud region and the stem base during 8 days after planting using chromatography-MS/MS technology. The effects of nodal position and external supply of indole-butyric acid on rooting were analyzed. Most cytokinins increased particularly in the bud region and peaked at day two before the bud break was recorded. IAA increased in both tissues between day one and day eight. Top versus bottom cuttings revealed higher levels of isopentenyladenosine (IPR) in both tissues as well as higher concentrations of IAA and a higher ratio of IAA to cytokinins particularly in the stem base. The dynamic of hormones and correlation analysis indicated that the higher IPR contributed to the enhanced IAA in the bud region which served as auxin source for the auxin homeostasis in the stem base, where IAA determined the auxin-cytokinin balance. Bottom versus top cuttings produced lower numbers and lengths of roots, whereas this deficit was counterbalanced by auxin application. Further considering other studies of rose, it is concluded that cytokinin-, sucrose- and zinc-dependent auxin biosynthesis in the outgrowing buds is an important factor that contributes to the enhanced IAA levels and auxin/cytokinin ratios in the stem base of apical cuttings, promoting root induction.


Asunto(s)
Citocininas , Rosa , Homeostasis , Ácidos Indolacéticos , Raíces de Plantas , Espectrometría de Masas en Tándem
2.
Ann Bot ; 124(6): 1053-1066, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31181150

RESUMEN

BACKGROUND AND AIMS: Adventitious root (AR) formation in Petunia hybrida is inhibited by low nitrogen fertilization of stock plants but promoted by dark incubation of cuttings before planting. We investigated whether the plant hormone auxin is involved in nitrogen- and dark-mediated AR formation. METHODS: Concentrations of indole-3-acetic acid (IAA) and RNA accumulation of genes controlling auxin homeostasis and function were monitored in the stem base in response to high versus low nitrogen supply to stock plants and to temporal dark vs. light exposure of cuttings by use of GC-MS/MS, a petunia-specific microarray and quantitative RT-PCR. Auxin source capacity, polar auxin transport in cuttings and auxin concentration in the rooting zone were manipulated to investigate the functional contribution of auxin homeostasis and response to the effects of nitrogen fertilization and dark exposure on rooting. KEY RESULTS: The nitrogen content of cuttings had only a marginal effect on IAA concentration in the stem base. Dark incubation enhanced the accumulation of IAA in the stem base during AR induction independent of nitrogen level. Early IAA accumulation in the dark depended on the upper shoot as an auxin source and was enhanced after apical IAA supply. Dark exposure stimulated RNA accumulation of auxin-related genes. In particular, expression of Ph-PIN1 and of genes controlling auxin signalling, including Ph-IAA14, Ph-ARF8, Ph-ARF10 and Ph-SAUR14, was enhanced, while the latter four were repressed in nitrogen-limited cuttings, particularly in the dark. Dark stimulation of rooting depended on polar auxin transport. Basal auxin application partially substituted the effect of dark exposure on rooting, whereas the auxin response of AR formation was strongly depressed by nitrogen limitation. CONCLUSIONS: Increased auxin delivery from the upper shoot and enhanced auxin signalling in the stem base contribute to dark-stimulated AR formation, while nitrogen limitation inhibits AR formation downstream of the auxin signal.


Asunto(s)
Petunia , Homeostasis , Ácidos Indolacéticos , Nitrógeno , Raíces de Plantas , Espectrometría de Masas en Tándem
3.
Ann Bot ; 123(6): 929-949, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-30759178

RESUMEN

BACKGROUND: Adventitious root (AR) formation in excised plant parts is a bottleneck for survival of isolated plant fragments. AR formation plays an important ecological role and is a critical process in cuttings for the clonal propagation of horticultural and forestry crops. Therefore, understanding the regulation of excision-induced AR formation is essential for sustainable and efficient utilization of plant genetic resources. SCOPE: Recent studies of plant transcriptomes, proteomes and metabolomes, and the use of mutants and transgenic lines have significantly expanded our knowledge concerning excision-induced AR formation. Here, we integrate new findings regarding AR formation in the cuttings of diverse plant species. These findings support a new system-oriented concept that the phytohormone-controlled reprogramming and differentiation of particular responsive cells in the cutting base interacts with a co-ordinated reallocation of plant resources within the whole cutting to initiate and drive excision-induced AR formation. Master control by auxin involves diverse transcription factors and mechanically sensitive microtubules, and is further linked to ethylene, jasmonates, cytokinins and strigolactones. Hormone functions seem to involve epigenetic factors and cross-talk with metabolic signals, reflecting the nutrient status of the cutting. By affecting distinct physiological units in the cutting, environmental factors such as light, nitrogen and iron modify the implementation of the genetically controlled root developmental programme. CONCLUSION: Despite advanced research in the last decade, important questions remain open for future investigations on excision-induced AR formation. These concern the distinct roles and interactions of certain molecular, hormonal and metabolic factors, as well as the functional equilibrium of the whole cutting in a complex environment. Starting from model plants, cell type- and phase-specific monitoring of controlling processes and modification of gene expression are promising methodologies that, however, need to be integrated into a coherent model of the whole system, before research findings can be translated to other crops.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Citocininas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Asignación de Recursos
4.
Physiol Plant ; 165(1): 58-72, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29774547

RESUMEN

Adventitious root formation in cuttings and establishment of arbuscular mycorrhizal symbiosis reflect the enormous plasticity of plants and are key factors in the efficient and sustainable clonal propagation and production of ornamental crops. Based on the high importance of Petunia hybrida for the European and US annual bedding plant markets and its suitability as a model for basic plant sciences, petunia has been established as an experimental system for elucidating the molecular and physiological processes underlying adventitious root formation and mycorrhizal symbiosis. In the present review, we introduce the tools of the Petunia model system. Then, we discuss findings regarding the hormonal and metabolic control of adventitious rooting in the context of diverse environmental factors as well as findings on the function of arbuscular mycorrhiza related to nutrient uptake and resistance to root pathogens. Considering the recent publication of the genomes of the parental species of P. hybrida and other tools available in the petunia scientific community, we will outline the quality of petunia as a model for future system-oriented analysis of root development and function in the context of environmental and genetic control, which are at the heart of modern horticulture.


Asunto(s)
Micorrizas , Petunia/crecimiento & desarrollo , Petunia/genética , Raíces de Plantas/crecimiento & desarrollo , Simbiosis , Petunia/microbiología , Raíces de Plantas/genética , Raíces de Plantas/microbiología
5.
J Exp Bot ; 68(15): 4233-4247, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28922771

RESUMEN

Adventitious root (AR) formation is characterized by a sequence of physiological and morphological processes and determined by external factors, including mineral nutrition, the impacts of which remain largely elusive. Morphological and anatomical evaluation of the effects of mineral elements on AR formation in leafy cuttings of Petunia hybrida revealed a striking stimulation by iron (Fe) and a promotive action of ammonium (NH4+). The optimal application period for these nutrients corresponded to early division of meristematic cells in the rooting zone and coincided with increased transcript levels of mitotic cyclins. Fe-localization studies revealed an enhanced allocation of Fe to the nuclei of meristematic cells in AR initials. NH4+ supply promoted AR formation to a lesser extent, most likely by favoring the availability of Fe. We conclude that Fe acts locally by promoting cell division in the meristematic cells of AR primordia. These results highlight a specific biological function of Fe in AR development and point to an unexploited importance of Fe for the vegetative propagation of plants from cuttings.


Asunto(s)
Compuestos de Amonio , División Celular , Hierro/fisiología , Petunia/fisiología , Meristema/metabolismo , Petunia/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo
6.
BMC Plant Biol ; 16(1): 219, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27724871

RESUMEN

BACKGROUND: Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (Nt), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how elevated Nt contents with a combined dark exposure of cuttings influence their internal N-pools including free amino acids and considered early anatomic events of AR formation as well as further root development in Petunia hybrida cuttings. RESULTS: Enhanced Nt contents of unrooted cuttings resulted in elevated total free amino acid levels and in particular glutamate (glu) and glutamine (gln) in leaf and basal stem. N-allocation to mobile N-pools increased whereas the allocation to insoluble protein-N declined. A dark exposure of cuttings conserved initial Nt and nitrate-N, while it reduced insoluble protein-N and increased soluble protein, amino- and amide-N. The increase of amino acids mainly comprised asparagine (asn), aspartate (asp) and arginine (arg) in the leaves, with distinct tissue specific responses to an elevated N supply. Dark exposure induced an early transient rise of asp followed by a temporary increase of glu. A strong positive N effect of high Nt contents of cuttings on AR formation after 384 h was observed. Root meristematic cells developed at 72 h with a negligible difference for two Nt levels. After 168 h, an enhanced Nt accelerated AR formation and gave rise to first obvious fully developed roots while only meristems were formed with a low Nt. However, dark exposure for 168 h promoted AR formation particularly in cuttings with a low Nt to such an extent so that the benefit of the enhanced Nt was almost compensated. Combined dark exposure and low Nt of cuttings strongly reduced shoot growth during AR formation. CONCLUSIONS: The results indicate that both enhanced Nt content and dark exposure of cuttings reinforced N signals and mobile N resources in the stem base facilitated by senescence-related proteolysis in leaves. Based on our results, a model of N mobilisation concomitant with carbohydrate depletion and its significance for AR formation is postulated.


Asunto(s)
Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Nitrógeno/metabolismo , Petunia/crecimiento & desarrollo , Petunia/metabolismo , Oscuridad , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
7.
J Exp Bot ; 66(5): 1437-52, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25540438

RESUMEN

Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue's auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Pisum sativum/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Ciclopentanos/metabolismo , Homeostasis , Oxilipinas/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
8.
Planta ; 238(3): 499-517, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23765266

RESUMEN

To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also investigated. Analysis of initial spatial IAA distribution in the cuttings revealed that approximately 40 and 10 % of the total IAA pool was present in the leaves and the stem base as rooting zone, respectively. A negative correlation existed between leaf size and IAA concentration. After excision of cuttings, IAA showed an early increase in the stem base with two peaks at 2 and 24 h post excision and, thereafter, a decline to low levels. This was mirrored by the expression pattern of the auxin-responsive GH3 gene. NPA treatment completely suppressed the 24-h peak of IAA and severely inhibited root formation. It also reduced activities of cell wall and vacuolar invertases in the early phase of AR formation and inhibited the rise of activities of glucose-6-phosphate dehydrogenase and phosphofructokinase during later stages. We propose a model in which spontaneous AR formation in Petunia cuttings is dependent on PAT and on the resulting 24-h peak of IAA in the rooting zone, where it induces early cellular events and also stimulates sink establishment. Subsequent root development stimulates glycolysis and the pentose phosphate pathway.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Petunia/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Transporte Biológico/fisiología , Metabolismo de los Hidratos de Carbono
9.
Plant J ; 64(6): 1002-17, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21143680

RESUMEN

Most terrestrial plants form arbuscular mycorrhiza (AM), mutualistic associations with soil fungi of the order Glomeromycota. The obligate biotrophic fungi trade mineral nutrients, mainly phosphate (P(i) ), for carbohydrates from the plants. Under conditions of high exogenous phosphate supply, when the plant can meet its own P requirements without the fungus, AM are suppressed, an effect which could be interpreted as an active strategy of the plant to limit carbohydrate consumption of the fungus by inhibiting its proliferation in the roots. However, the mechanisms involved in fungal inhibition are poorly understood. Here, we employ a transcriptomic approach to get insight into potential shifts in metabolic activity and symbiotic signalling, and in the defence status of plants exposed to high P(i) levels. We show that in mycorrhizal roots of petunia, a similar set of symbiosis-related genes is expressed as in mycorrhizal roots of Medicago, Lotus and rice. P(i) acts systemically to repress symbiotic gene expression and AM colonization in the root. In established mycorrhizal roots, P(i) repressed symbiotic gene expression rapidly, whereas the inhibition of colonization followed with a lag of more than a week. Taken together, these results suggest that P(i) acts by repressing essential symbiotic genes, in particular genes encoding enzymes of carotenoid and strigolactone biosynthesis, and symbiosis-associated phosphate transporters. The role of these effects in the suppression of symbiosis under high P(i) conditions is discussed.


Asunto(s)
Micorrizas/fisiología , Petunia/microbiología , Fosfatos/farmacología , Raíces de Plantas/genética , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos , Petunia/genética , Petunia/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Simbiosis , Transcripción Genética
10.
Front Plant Sci ; 11: 907, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714348

RESUMEN

Each year, billions of ornamental young plants are produced worldwide from cuttings that are harvested from stock plants and planted to form adventitious roots. Depending on the plant genotype, the maturation of the cutting, and the particular environment, which is complex and often involves intermediate storage of cuttings under dark conditions and shipping between different climate regions, induced senescence or abscission of leaves and insufficient root development can impair the success of propagation and the quality of generated young plants. Recent findings on the molecular and physiological control of leaf vitality and adventitious root formation are integrated into a systemic perspective on improved physiologically-based control of cutting propagation. The homeostasis and signal transduction of the wound responsive plant hormones ethylene and jasmonic acid, of auxin, cytokinins and strigolactones, and the carbon-nitrogen source-sink balance in cuttings are considered as important processes that are both, highly responsive to environmental inputs and decisive for the development of cuttings. Important modules and bottlenecks of cutting function are identified. Critical environmental inputs at stock plant and cutting level are highlighted and physiological outputs that can be used as quality attributes to monitor the functional capacity of cuttings and as response parameters to optimize the cutting environment are discussed. Facing the great genetic diversity of ornamental crops, a physiologically targeted approach is proposed to define bottleneck-specific plant groups. Components from the field of machine learning may help to mathematically describe the complex environmental response of specific plant species.

11.
New Phytol ; 181(3): 613-25, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19076299

RESUMEN

Adventitious root formation (ARF) in the model plant Petunia hybrida cv. Mitchell has been analysed in terms of anatomy, gene expression, enzymatic activities and levels of metabolites. This study focuses on the involvement of wound response and primary metabolism. Microscopic techniques were complemented with targeted transcript, enzyme and metabolite profiling using real time polymerase chain reaction (PCR), Northern blot, enzymatic assays, chromatography and mass spectrometry. Three days after severance from the stock plants, first meristematic cells appeared which further developed into root primordia and finally adventitious roots. Excision of cuttings led to a fast and transient increase in the wound-hormone jasmonic acid, followed by the expression of jasmonate-regulated genes such as cell wall invertase. Analysis of soluble and insoluble carbohydrates showed a continuous accumulation during ARF. A broad metabolite profiling revealed a strong increase in organic acids and resynthesis of essential amino acids. Substantial changes in enzyme activities and metabolite levels indicate that specific enzymes and metabolites might play a crucial role during ARF. Three metabolic phases could be defined: (i) sink establishment phase characterized by apoplastic unloading of sucrose and being probably mediated by jasmonates; (ii) recovery phase; and (iii) maintenance phase, in which a symplastic unloading occurs.


Asunto(s)
Petunia/metabolismo , Raíces de Plantas/metabolismo , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Respiración de la Célula , Ciclo del Ácido Cítrico , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucólisis , Oxilipinas/metabolismo , Petunia/citología , Petunia/enzimología , Petunia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Front Plant Sci ; 7: 381, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27064322

RESUMEN

Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of jasmonic acid stimulate AR formation, while both pathways are linked to auxin. Future research on the function of candidate genes should consider their tissue-specific role and regulation by environmental factors. Furthermore, the whole cutting should be regarded as a system of physiological units with diverse functions specifically responding to the environment and determining the rooting response.

14.
Plant Sci ; 243: 10-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26795147

RESUMEN

The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Petunia/genética , Proteínas de Plantas/genética , beta-Fructofuranosidasa/genética , Secuestro de Carbono , Oscuridad , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , beta-Fructofuranosidasa/metabolismo
15.
Nat Plants ; 2(6): 16074, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27255838

RESUMEN

Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n = 14) containing 32,928 and 36,697 protein-coding genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization: the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.


Asunto(s)
Evolución Molecular , Genoma de Planta , Hibridación Genética , Petunia/genética , Poliploidía
16.
Front Plant Sci ; 6: 583, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26284099

RESUMEN

Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12°C vs. 16°C) affect growth of the sensitive Petunia hybrida cultivar 'SweetSunshine Williams', the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars.

17.
Front Plant Sci ; 5: 494, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25400641

RESUMEN

Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.

18.
PLoS One ; 9(6): e100997, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24978694

RESUMEN

To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Petunia/genética , Raíces de Plantas/genética , Transcriptoma , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Petunia/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo
19.
J Plant Physiol ; 167(7): 547-54, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20047776

RESUMEN

The effect of temporary dark exposure on adventitious root formation (ARF) in Petuniaxhybrida 'Mitchell' cuttings was investigated. Histological and metabolic changes in the cuttings during the dark treatment and subsequent rooting in the light were recorded. Excised cuttings were exposed to the dark for seven days at 10 degrees C followed by a nine-day rooting period in perlite or were rooted immediately for 16 days in a climate chamber at 22/20 degrees C (day/night) and a photosynthetic photon flux density (PPFD) of 100micromolm(-2)s(-1). Dark exposure prior to rooting increased, accelerated and synchronized ARF. The rooting period was reduced from 16 days (non-treated cuttings) to 9 days (treated cuttings). Under optimum conditions, despite the reduced rooting period, dark-exposed cuttings produced a higher number and length of roots than non-treated cuttings. An increase in temperature to 20 degrees C during the dark treatment or extending the cold dark exposure to 14 days caused a similar enhancement of root development compared to non-treated cuttings. Root meristem formation had already started during the dark treatment and was enhanced during the subsequent rooting period. Levels of soluble sugars (glucose, fructose and sucrose) and starch in leaf and basal stem tissues significantly decreased during the seven days of dark exposure. This depletion was, however, compensated during rooting after 6 and 24h for soluble sugars in leaves and the basal stem, respectively, whereas the sucrose level in the basal stem was already increased at 6h. The association of higher carbohydrate levels with improved rooting in previously dark-exposed versus non-treated cuttings indicates that increased post-darkness carbohydrate availability and allocation towards the stem base contribute to ARF under the influence of dark treatment and provide energy for cell growth subject to a rising sink intensity in the base of the cutting.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Oscuridad , Petunia/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Petunia/metabolismo
20.
Mycorrhiza ; 17(1): 67-72, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17033815

RESUMEN

In this paper, we provide evidence that the rooting performance of cuttings can be improved by the arbuscular mycorrhizal (AM) symbiosis of donor plants. Poinsettia stock plants were inoculated with the Glomus intraradices isolate H510 and grown in three different cultivation systems (two organic and one conventional). AM colonization was not related to P availability in the substrate. Decay of the excised cuttings in response to unfavorable postharvest storage conditions was significantly reduced by AM colonization of the stock plants. In most cases, AM significantly promoted the formation of adventitious roots in the stored cuttings. The strongest effect of AM was found when donor plants were grown in a modified organic substrate; then AM-conditioned cuttings showed higher leaf sugar levels and a changed kinetic of carbohydrates during storage. Analyses of N, P, and K in cuttings did not indicate a nutritional effect. The results support the idea that an altered carbohydrate metabolism and plant hormones can contribute to improved rooting performance of cuttings excised from mycorrhizal donor plants.


Asunto(s)
Euphorbia/crecimiento & desarrollo , Euphorbia/microbiología , Micorrizas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Carbohidratos , Minerales , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA