Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(5): e1010981, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37200378

RESUMEN

The spike (S) glycoprotein of SARS CoV-2 is the target of neutralizing antibodies (NAbs) that are crucial for vaccine effectiveness. The S1 subunit binds ACE2 while the S2 subunit mediates virus-cell membrane fusion. S2 is a class I fusion glycoprotein subunit and contains a central coiled coil that acts as a scaffold for the conformational changes associated with fusion function. The coiled coil of S2 is unusual in that the 3-4 repeat of inward-facing positions are mostly occupied by polar residues that mediate few inter-helical contacts in the prefusion trimer. We examined how insertion of bulkier hydrophobic residues (Val, Leu, Ile, Phe) to fill a cavity next to Ala1016 and Ala1020 in the 3-4 repeat affects the stability and antigenicity of S trimers. Substitution of Ala1016 with bulkier hydrophobic residues in the context of a prefusion-stabilized S trimer, S2P-FHA, was associated with increased thermal stability. S glycoprotein membrane fusion function was retained with Ala1016/Ala1020 cavity-filling mutations associated with improved recombinant S2P-FHA thermostability, however 2 mutants, A1016L and A1016V/A1020I, lacked ability to mediate entry of S-HIV-1 pseudoparticles into 293-ACE2 cells. When assessed as immunogens, two thermostable S2P-FHA mutants derived from the ancestral isolate, A1016L (16L) and A1016V/A1020I (VI) elicited neutralizing antibody with 50%-inhibitory dilutions (ID50s) in the range 2,700-5,110 for ancestral and Delta-derived viruses, and 210-1,744 for Omicron BA.1. The antigens elicited antibody specificities directed to the receptor-binding domain (RBD), N-terminal domain (NTD), fusion peptide and stem region of S2. The VI mutation enabled the production of intrinsically stable Omicron BA.1 and Omicron BA.4/5 S2P-FHA-like ectodomain oligomers in the absence of an external trimerization motif (T4 foldon), thus representing an alternative approach for stabilizing oligomeric S glycoprotein vaccines.


Asunto(s)
COVID-19 , Síndrome Respiratorio Agudo Grave , Humanos , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes
2.
J Hepatol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604387

RESUMEN

BACKGROUND & AIMS: In individuals highly exposed to HCV, reinfection is common, suggesting that natural development of sterilising immunity is difficult. In those that are reinfected, some will develop a persistent infection, while a small proportion repeatedly clear the virus, suggesting natural protection is possible. The aim of this study was to characterise immune responses associated with rapid natural clearance of HCV reinfection. METHODS: Broad neutralising antibodies (nAbs) and Envelope 2 (E2)-specific memory B cell (MBC) responses were examined longitudinally in 15 individuals with varied reinfection outcomes. RESULTS: Broad nAb responses were associated with MBC recall, but not with clearance of reinfection. Strong evidence of antigen imprinting was found, and the B-cell receptor repertoire showed a high level of clonality with ongoing somatic hypermutation of many clones over subsequent reinfection events. Single-cell transcriptomic analyses showed that cleared reinfections featured an activated transcriptomic profile in HCV-specific B cells that rapidly expanded upon reinfection. CONCLUSIONS: MBC quality, but not necessarily breadth of nAb responses, is important for protection against antigenically diverse variants, which is encouraging for HCV vaccine development. IMPACT AND IMPLICATIONS: HCV continues to have a major health burden globally. Limitations in the health infrastructure for diagnosis and treatment, as well as high rates of reinfection, indicate that a vaccine that can protect against chronic HCV infection will greatly complement current efforts to eliminate HCV-related disease. With alternative approaches to testing vaccines, such as controlled human inoculation trials under consideration, we desperately need to identify the correlates of immune protection. In this study, in a small but rare cohort of high-risk injecting drug users who were reinfected multiple times, breadth of neutralisation was not associated with ultimate clearance of the reinfection event. Alternatively, characteristics of the HCV-specific B-cell response associated with B-cell proliferation were. This study indicates that humoral responses are important for protection and suggests that for genetically very diverse viruses, such as HCV, it may be beneficial to look beyond just antibodies as correlates of protection.

3.
J Clin Immunol ; 43(7): 1506-1518, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37322095

RESUMEN

Following the COVID-19 pandemic, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the SARS-CoV-2 Spike receptor-binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response to mRNA BNT162b2 (Pfizer-BioNTech) vaccination. Whole blood was sampled from 31 healthy adults pre-vaccination and 4 weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each time point. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1 and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.


Asunto(s)
Vacuna BNT162 , COVID-19 , Adulto , Humanos , Células B de Memoria , Pandemias , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Adenoviridae , Anticuerpos Neutralizantes , Inmunoglobulina G , Anticuerpos Antivirales
4.
Gastroenterology ; 162(2): 562-574, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34655573

RESUMEN

BACKGROUND & AIMS: Development of a prophylactic hepatitis C virus (HCV) vaccine will require accurate and reproducible measurement of neutralizing breadth of vaccine-induced antibodies. Currently available HCV panels may not adequately represent the genetic and antigenic diversity of circulating HCV strains, and the lack of standardization of these panels makes it difficult to compare neutralization results obtained in different studies. Here, we describe the selection and validation of a genetically and antigenically diverse reference panel of 15 HCV pseudoparticles (HCVpps) for neutralization assays. METHODS: We chose 75 envelope (E1E2) clones to maximize representation of natural polymorphisms observed in circulating HCV isolates, and 65 of these clones generated functional HCVpps. Neutralization sensitivity of these HCVpps varied widely. HCVpps clustered into 15 distinct groups based on patterns of relative sensitivity to 7 broadly neutralizing monoclonal antibodies. We used these data to select a final panel of 15 antigenically representative HCVpps. RESULTS: Both the 65 and 15 HCVpp panels span 4 tiers of neutralization sensitivity, and neutralizing breadth measurements for 7 broadly neutralizing monoclonal antibodies were nearly equivalent using either panel. Differences in neutralization sensitivity between HCVpps were independent of genetic distances between E1E2 clones. CONCLUSIONS: Neutralizing breadth of HCV antibodies should be defined using viruses spanning multiple tiers of neutralization sensitivity rather than panels selected solely for genetic diversity. We propose that this multitier reference panel could be adopted as a standard for the measurement of neutralizing antibody potency and breadth, facilitating meaningful comparisons of neutralization results from vaccine studies in different laboratories.


Asunto(s)
Variación Antigénica/inmunología , Antígenos Virales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Hepacivirus/inmunología , Pruebas de Neutralización/métodos , Proteínas del Envoltorio Viral/inmunología , Variación Antigénica/genética , Antígenos Virales/genética , Línea Celular Tumoral , Hepacivirus/genética , Hepatitis C/prevención & control , Humanos , Inmunogenicidad Vacunal , Reproducibilidad de los Resultados , Desarrollo de Vacunas , Proteínas del Envoltorio Viral/genética , Vacunas contra Hepatitis Viral/inmunología
5.
Immunol Cell Biol ; 101(9): 857-866, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37593973

RESUMEN

Current serological tests cannot differentiate between total immunoglobulin A (IgA) and dimeric IgA (dIgA) associated with mucosal immunity. Here, we describe two new assays, dIgA-ELISA and dIgA-multiplex bead assay (MBA), that utilize the preferential binding of dIgA to a chimeric form of secretory component, allowing the differentiation between dIgA and monomeric IgA. dIgA responses elicited through severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were measured in (i) a longitudinal panel, consisting of 74 samples (n = 20 individuals) from hospitalized cases of coronavirus disease 2019 (COVID-19); (ii) a longitudinal panel, consisting of 96 samples (n = 10 individuals) from individuals with mild COVID-19; (iii) a cross-sectional panel with PCR-confirmed SARS-CoV-2 infection with mild COVID-19 (n = 199) and (iv) pre-COVID-19 samples (n = 200). The dIgA-ELISA and dIgA-MBA demonstrated a specificity for dIgA of 99% and 98.5%, respectively. Analysis of dIgA responses in the longitudinal panels revealed that 70% (ELISA) and 50% (MBA) of patients elicited a dIgA response by day 20 after PCR diagnosis with a SARS-CoV-2 infection. Individuals with mild COVID-19 displayed increased levels of dIgA within the first 3 weeks after diagnosis but responses appeared to be short lived, compared with sustained IgA levels. However, in samples from hospitalized patients with COVID-19 we observed high and sustained levels of dIgA, up to 245 days after PCR diagnosis. Our results suggest that severe COVID-19 infections are associated with sustained levels of plasma dIgA compared with mild cases.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/metabolismo , Estudios Transversales , Inmunoglobulina A , Anticuerpos Antivirales , Inmunoglobulina M
6.
J Virol ; 96(5): e0167521, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34986001

RESUMEN

A vaccine to prevent hepatitis C virus (HCV) infection is urgently needed for use alongside direct-acting antiviral drugs to achieve elimination targets. We have previously shown that a soluble recombinant form of the glycoprotein E2 ectodomain (residues 384 to 661) that lacks three variable regions (Δ123) is able to elicit a higher titer of broadly neutralizing antibodies (bNAbs) than the parental form (receptor-binding domain [RBD]). In this study, we engineered a viral nanoparticle that displays HCV glycoprotein E2 on a duck hepatitis B virus (DHBV) small surface antigen (S) scaffold. Four variants of E2-S virus-like particles (VLPs) were constructed: Δ123-S, RBD-S, Δ123A7-S, and RBDA7-S; in the last two, 7 cysteines were replaced with alanines. While all four E2-S variant VLPs display E2 as a surface antigen, the Δ123A7-S and RBDA7-S VLPs were the most efficiently secreted from transfected mammalian cells and displayed epitopes recognized by cross-genotype broadly neutralizing monoclonal antibodies (bNMAbs). Both Δ123A7-S and RBDA7-S VLPs were immunogenic in guinea pigs, generating high titers of antibodies reactive to native E2 and able to prevent the interaction between E2 and the cellular receptor CD81. Four out of eight animals immunized with Δ123A7-S elicited neutralizing antibodies (NAbs), with three of those animals generating bNAbs against 7 genotypes. Immune serum generated by animals with NAbs mapped to major neutralization epitopes located at residues 412 to 420 (epitope I) and antigenic region 3. VLPs that display E2 glycoproteins represent a promising vaccine platform for HCV and could be adapted to large-scale manufacturing in yeast systems. IMPORTANCE There is currently no vaccine to prevent hepatitis C virus infection, which affects more than 71 million people globally and is a leading cause of progressive liver disease, including cirrhosis and cancer. Broadly neutralizing antibodies that recognize the E2 envelope glycoprotein can protect against heterologous viral infection and correlate with viral clearance in humans. However, broadly neutralizing antibodies are difficult to generate due to conformational flexibility of the E2 protein and epitope occlusion. Here, we show that a VLP vaccine using the duck hepatitis B virus S antigen fused to HCV glycoprotein E2 assembles into virus-like particles that display epitopes recognized by broadly neutralizing antibodies and elicit such antibodies in guinea pigs. This platform represents a novel HCV vaccine candidate amenable to large-scale manufacture at low cost.


Asunto(s)
Hepacivirus , Hepatitis C , Proteínas del Envoltorio Viral , Vacunas contra Hepatitis Viral , Animales , Antígenos de Superficie/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Epítopos/inmunología , Cobayas , Hepacivirus/genética , Hepacivirus/inmunología , Antígenos de Superficie de la Hepatitis B/química , Hepatitis C/inmunología , Anticuerpos contra la Hepatitis C/inmunología , Humanos , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/inmunología
7.
Hepatology ; 76(4): 1190-1202, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35313015

RESUMEN

BACKGROUND AND AIMS: A prophylactic vaccine targeting multiple HCV genotypes (gt) is urgently required to meet World Health Organization elimination targets. Neutralizing antibodies (nAbs) and CD4+ and CD8+ T cells are associated with spontaneous clearance of HCV, and each may contribute to protective immunity. However, current vaccine candidates generate either nAbs or T cells targeting genetically variable epitopes and have failed to show efficacy in human trials. We have previously shown that a simian adenovirus vector (ChAdOx1) encoding conserved sequences across gt1-6 (ChAd-Gt1-6), and separately gt-1a E2 protein with variable regions deleted (E2Δ123HMW ), generates pan-genotypic T cells and nAbs, respectively. We now aim to develop a vaccine to generate both viral-specific B- and T-cell responses concurrently. APPROACH AND RESULTS: We show that vaccinating with ChAd-Gt1-6 and E2Δ123HMW sequentially in mice generates T-cell and antibody (Ab) responses comparable to either vaccine given alone. We encoded E2Δ123 in ChAdOx1 (ChAd-E2Δ123) and show that this, given with an E2Δ123HMW protein boost, induces greater CD81-E2 inhibitory and HCV-pseudoparticle nAb titers compared to the E2Δ123HMW prime boost. We developed bivalent viral vector vaccines (ChAdOx1 and modified vaccinia Ankara [MVA]) encoding both Gt1-6 and E2Δ123 immunogens (Gt1-6-E2Δ123) generating polyfunctional CD4+ and CD8+ T cells and nAb titers in prime/boost strategies. This approach generated nAb responses comparable to monovalent E2Δ123 ChAd/MVA vaccines and superior to three doses of recombinant E2Δ123HMW protein, while also generating high-magnitude T-cell responses. CONCLUSIONS: These data are an important step forward for the development of a pan-genotype HCV vaccine to elicit T cells and nAbs for future assessment in humans.


Asunto(s)
Hepatitis C , Vacunas , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , Epítopos , Genotipo , Hepacivirus/genética , Hepatitis C/prevención & control , Anticuerpos contra la Hepatitis C , Humanos , Ratones , Virus Vaccinia/genética
8.
Liver Int ; 43(5): 989-999, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36719055

RESUMEN

BACKGROUND: Alanine aminotransferase (ALT) measurement is essential for evaluation of liver disease. We validated a novel rapid point-of-care (POC) test for ALT1 against laboratory ALT. METHODS: Stored plasma samples from adults with chronic liver disease (Test cohort n = 240; Validation cohort n = 491) were analysed using the BioPoint® antigen immunoassay POC ALT1 lateral flow test, which provides quantitative ALT results (Axxin handheld reader) or semi-quantitative results (visual read, cut off 40 IU/ml). The accuracy of POC ALT1 to detect ALT > 40 IU/L was determined by ROC analysis. In patients with chronic hepatitis B, treatment eligibility (EASL criteria) was determined using POC ALT1 and compared to laboratory ALT. RESULTS: POC ALT1 test had good accuracy for laboratory ALT > 40 IU/L: AUROC 0.93 (95% CI: 0.89-0.96) in the Test cohort and AUROC 0.92 (95% CI: 0.88-0.95) in the Validation cohort. POC ALT1 cut off of 0.8 for ALT > 40 IU/L maximised sensitivity (97%) and specificity (71%) in the Test cohort (42% laboratory ALT > 40 IU/L) and yielded PPV 84% and NPV 91% in the Validation cohort (19% laboratory ALT > 40 IU/L). Semi-quantitative POC ALT1 had good accuracy for laboratory ALT in the Validation cohort (AUROC 0.85, 95% CI: 0.81-0.99; sensitivity 77% and specificity 93%). Combined with HBV DNA and transient elastography, both quantitative and semi-quantitative POC ALT1 tests had good accuracy for excluding hepatitis B treatment needs (sensitivity 96%, specificity 78% and NPV 99%). CONCLUSION: The POC ALT1 test had good accuracy for elevated ALT levels and for determining treatment eligibility among people with chronic hepatitis B.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Adulto , Humanos , Alanina Transaminasa , Hepatitis B Crónica/diagnóstico , Proyectos Piloto , Estudios de Cohortes , ADN Viral
9.
Proc Natl Acad Sci U S A ; 117(17): 9529-9536, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284399

RESUMEN

Bats are reservoirs of emerging viruses that are highly pathogenic to other mammals, including humans. Despite the diversity and abundance of bat viruses, to date they have not been shown to harbor exogenous retroviruses. Here we report the discovery and characterization of a group of koala retrovirus-related (KoRV-related) gammaretroviruses in Australian and Asian bats. These include the Hervey pteropid gammaretrovirus (HPG), identified in the scat of the Australian black flying fox (Pteropus alecto), which is the first reproduction-competent retrovirus found in bats. HPG is a close relative of KoRV and the gibbon ape leukemia virus (GALV), with virion morphology and Mn2+-dependent virion-associated reverse transcriptase activity typical of a gammaretrovirus. In vitro, HPG is capable of infecting bat and human cells, but not mouse cells, and displays a similar pattern of cell tropism as KoRV-A and GALV. Population studies reveal the presence of HPG and KoRV-related sequences in several locations across northeast Australia, as well as serologic evidence for HPG in multiple pteropid bat species, while phylogenetic analysis places these bat viruses as the basal group within the KoRV-related retroviruses. Taken together, these results reveal bats to be important reservoirs of exogenous KoRV-related gammaretroviruses.


Asunto(s)
Quirópteros/virología , Gammaretrovirus/aislamiento & purificación , Animales , Australia , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Phascolarctidae/virología
10.
J Biol Chem ; 295(21): 7179-7192, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32299914

RESUMEN

The E2 glycoprotein of hepatitis C virus (HCV) is the major target of broadly neutralizing antibodies (bNAbs) that are critical for the efficacy of a prophylactic HCV vaccine. We previously showed that a cell culture-derived, disulfide-linked high-molecular-weight (HMW) form of the E2 receptor-binding domain lacking three variable regions, Δ123-HMW, elicits broad neutralizing activity against the seven major genotypes of HCV. A limitation to the use of this antigen is that it is produced only at low yields and does not have a homogeneous composition. Here, we employed a sequential reduction and oxidation strategy to efficiently refold two high-yielding monomeric E2 species, D123 and a disulfide-minimized version (D123A7), into disulfide-linked HMW-like species (Δ123r and Δ123A7r). These proteins exhibited normal reactivity to bNAbs with continuous epitopes on the neutralizing face of E2, but reduced reactivity to conformation-dependent bNAbs and nonneutralizing antibodies (non-NAbs) compared with the corresponding monomeric species. Δ123r and Δ123A7r recapitulated the immunogenic properties of cell culture-derived D123-HMW in guinea pigs. The refolded antigens elicited antibodies that neutralized homologous and heterologous HCV genotypes, blocked the interaction between E2 and its cellular receptor CD81, and targeted the AS412, AS434, and AR3 domains. Of note, antibodies directed to epitopes overlapping with those of non-NAbs were absent. The approach to E2 antigen engineering outlined here provides an avenue for the development of preventive HCV vaccine candidates that induce bNAbs at higher yield and lower cost.


Asunto(s)
Glicoproteínas/inmunología , Hepacivirus/inmunología , Antígenos de la Hepatitis/inmunología , Inmunogenicidad Vacunal , Mutación Missense , Vacunas contra Hepatitis Viral/inmunología , Proteínas Virales/inmunología , Sustitución de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Glicoproteínas/genética , Cobayas , Hepacivirus/genética , Anticuerpos Antihepatitis/inmunología , Antígenos de la Hepatitis/genética , Humanos , Vacunas contra Hepatitis Viral/genética , Proteínas Virales/genética
11.
J Hepatol ; 72(4): 670-679, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31785346

RESUMEN

BACKGROUND & AIMS: Neutralising antibodies (NAbs) play a key role in clearance of HCV. NAbs have been isolated and mapped to several domains on the HCV envelope proteins. However, the immunodominance of these epitopes in HCV infection remains unknown, hindering efforts to elicit optimal epitope-specific responses. Furthermore, it remains unclear which epitope-specific responses are associated with broad NAb (bNAb) activity in primary HCV infection. The aim of this study was to define B cell immunodominance in primary HCV, and its implications on neutralisation breadth and clearance. METHODS: Using samples from 168 patients with primary HCV infection, the antibody responses targeted 2 immunodominant domains, termed domains B and C. Genotype 1 and 3 infections were associated with responses targeted towards different bNAb domains. RESULTS: No epitopes were uniquely targeted by clearers compared to those who developed chronic infection. Samples with bNAb activity were enriched for multi-specific responses directed towards the epitopes antigenic region 3, antigenic region 4, and domain D, and did not target non-neutralising domains. CONCLUSIONS: This study outlines for the first time a clear NAb immunodominance profile in primary HCV infection, and indicates that it is influenced by the infecting virus. It also highlights the need for a vaccination strategy to induce multi-specific responses that do not target non-neutralising domains. LAY SUMMARY: Neutralising antibodies will likely form a key component of a protective hepatitis C virus vaccine. In this work we characterise the predominant neutralising and non-neutralising antibody (epitope) targets in acute hepatitis C virus infection. We have defined the natural hierarchy of epitope immunodominance, and demonstrated that viral genotype can impact on this hierarchy. Our findings highlight key epitopes that are associated with broadly neutralising antibodies, and the deleterious impact of mounting a response towards some of these domains on neutralising breadth. These findings should guide future efforts to design immunogens aimed at generating neutralising antibodies with a vaccine candidate.


Asunto(s)
Linfocitos B/inmunología , Epítopos de Linfocito B/inmunología , Hepacivirus/inmunología , Hepatitis C/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Australia/epidemiología , Femenino , Genotipo , Hepacivirus/genética , Hepatitis C/epidemiología , Hepatitis C/virología , Anticuerpos contra la Hepatitis C/inmunología , Humanos , Masculino , Estudios Prospectivos , Seroconversión , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/inmunología
12.
Immunol Cell Biol ; 98(10): 805-806, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33222362

RESUMEN

The December 2020 issue contains a Special Feature on Infection and Immunity, featuring selected presentations from the 10th Lorne Infection and Immunity Conference. The breadth and excellence of science presented at this meeting is encompassed by the articles in this issue by Lamiable et al., Saunders et al. and Chua et al.


Asunto(s)
Inmunidad , Infecciones , Congresos como Asunto , Humanos
14.
J Biol Chem ; 293(16): 6099-6120, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29496992

RESUMEN

HIV-1 is spread by cell-free virions and by cell-cell viral transfer. We asked whether the structure and function of a broad neutralizing antibody (bNAb) epitope, the membrane-proximal ectodomain region (MPER) of the viral gp41 transmembrane glycoprotein, differ in cell-free and cell-cell-transmitted viruses and whether this difference could be related to Ab neutralization sensitivity. Whereas cell-free viruses bearing W666A and I675A substitutions in the MPER lacked infectivity, cell-associated mutant viruses were able to initiate robust spreading infection. Infectivity was restored to cell-free viruses by additional substitutions in the cytoplasmic tail (CT) of gp41 known to disrupt interactions with the viral matrix protein. We observed contrasting effects on cell-free virus infectivity when W666A was introduced to two transmitted/founder isolates, but both mutants could still mediate cell-cell spread. Domain swapping indicated that the disparate W666A phenotypes of the cell-free transmitted/founder viruses are controlled by sequences in variable regions 1, 2, and 4 of gp120. The sequential passaging of an MPER mutant (W672A) in peripheral blood mononuclear cells enabled selection of viral revertants with loss-of-glycan suppressor mutations in variable region 1, suggesting a functional interaction between variable region 1 and the MPER. An MPER-directed bNAb neutralized cell-free virus but not cell-cell viral spread. Our results suggest that the MPER of cell-cell-transmitted virions has a malleable structure that tolerates mutagenic disruption but is not accessible to bNAbs. In cell-free virions, interactions mediated by the CT impose an alternative MPER structure that is less tolerant of mutagenic alteration and is efficiently targeted by bNAbs.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/fisiología , Fusión de Membrana , Internalización del Virus , Línea Celular , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/genética , Infecciones por VIH/transmisión , Infecciones por VIH/virología , VIH-1/genética , Humanos , Modelos Moleculares , Mutación Puntual , Dominios Proteicos , Replicación Viral
15.
BMC Med ; 17(1): 175, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31530275

RESUMEN

BACKGROUND: The introduction of highly effective direct-acting antiviral (DAA) therapy for hepatitis C has led to calls to eliminate it as a public health threat through treatment-as-prevention. Recent studies suggest it is possible to develop a vaccine to prevent hepatitis C. Using a mathematical model, we examined the potential impact of a hepatitis C vaccine on the feasibility and cost of achieving the global WHO elimination target of an 80% reduction in incidence by 2030 in the era of DAA treatment. METHODS: The model was calibrated to 167 countries and included two population groups (people who inject drugs (PWID) and the general community), features of the care cascade, and the coverage of health systems to deliver services. Projections were made for 2018-2030. RESULTS: The optimal incidence reduction strategy was to implement test and treat programmes among PWID, and in settings with high levels of community transmission undertake screening and treatment of the general population. With a vaccine available, the optimal strategy was to include vaccination within test and treat programmes, in addition to vaccinating adolescents in settings with high levels of community transmission. Of the 167 countries modelled, between 0 and 48 could achieve an 80% reduction in incidence without a vaccine. This increased to 15-113 countries if a 75% efficacious vaccine with a 10-year duration of protection were available. If a vaccination course cost US$200, vaccine use reduced the cost of elimination for 66 countries (40%) by an aggregate of US$7.4 (US$6.6-8.2) billion. For a US$50 per course vaccine, this increased to a US$9.8 (US$8.7-10.8) billion cost reduction across 78 countries (47%). CONCLUSIONS: These findings strongly support the case for hepatitis C vaccine development as an urgent public health need, to ensure hepatitis C elimination is achievable and at substantially reduced costs for a majority of countries.


Asunto(s)
Erradicación de la Enfermedad , Hepacivirus/inmunología , Hepatitis C/prevención & control , Modelos Teóricos , Vacunación , Vacunas contra Hepatitis Viral/uso terapéutico , Antivirales/economía , Antivirales/uso terapéutico , Erradicación de la Enfermedad/economía , Erradicación de la Enfermedad/organización & administración , Erradicación de la Enfermedad/normas , Erradicación de la Enfermedad/estadística & datos numéricos , Hepatitis C/economía , Hepatitis C/epidemiología , Hepatitis C Crónica/economía , Hepatitis C Crónica/epidemiología , Hepatitis C Crónica/prevención & control , Humanos , Incidencia , Salud Pública/economía , Salud Pública/métodos , Abuso de Sustancias por Vía Intravenosa/economía , Abuso de Sustancias por Vía Intravenosa/epidemiología , Abuso de Sustancias por Vía Intravenosa/virología , Atención de Salud Universal , Vacunación/normas , Cobertura de Vacunación/economía , Cobertura de Vacunación/organización & administración , Vacunas contra Hepatitis Viral/economía
16.
J Virol ; 92(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29467319

RESUMEN

The hepatitis C virus (HCV) E2 glycoprotein is a major target of the neutralizing antibody (nAb) response, with multiple type-specific and broadly neutralizing antibody (bnAb) epitopes identified. The 412-to-423 region can generate bnAbs that block interaction with the cell surface receptor CD81, with activity toward multiple HCV genotypes. In this study, we reveal the structure of rodent monoclonal antibody 24 (MAb24) with an extensive contact area toward a peptide spanning the 412-to-423 region. The crystal structure of the MAb24-peptide 412-to-423 complex reveals the paratope bound to a peptide hairpin highly similar to that observed with human MAb HCV1 and rodent MAb AP33, but with a different angle of approach. In viral outgrowth experiments, we demonstrated three distinct genotype 2a viral populations that acquired resistance to MAb24 via N415D, N417S, and N415D/H386R mutations. Importantly, the MAb24-resistant viruses exhibited significant increases in sensitivity to the majority of bnAbs directed to epitopes within the 412-to-423 region and in additional antigenic determinants located within E2 and the E1E2 complex. This study suggests that modification of N415 causes a global change in glycoprotein structure that increases its vulnerability to neutralization by other antibodies. This finding suggests that in the context of an antibody response to viral infection, acquisition of escape mutations in the 412-to-423 region renders the virus more susceptible to neutralization by other specificities of nAbs, effectively reducing the immunological fitness of the virus. A vaccine for HCV that generates polyspecific humoral immunity with specificity for the 412-to-423 region and at least one other region of E2 is desirable.IMPORTANCE Understanding how antibodies neutralize hepatitis C virus (HCV) is essential for vaccine development. This study reveals for the first time that when HCV develops resistance to a major class of bnAbs targeting the 412-to-423 region of E2, this results in a concomitant increase in sensitivity to neutralization by a majority of other bnAb specificities. Vaccines for the prevention of HCV infection should therefore generate bnAbs directed toward the 412-to-423 region of E2 and additional bnAb epitopes within the viral glycoproteins.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Complejo Antígeno-Anticuerpo/metabolismo , Epítopos/metabolismo , Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/inmunología , Proteínas del Envoltorio Viral/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Complejo Antígeno-Anticuerpo/inmunología , Carcinoma Hepatocelular , Línea Celular Tumoral , Epítopos/inmunología , Hepacivirus/genética , Anticuerpos contra la Hepatitis C/metabolismo , Humanos , Neoplasias Hepáticas , Estructura Secundaria de Proteína , Tetraspanina 28/inmunología , Vacunas contra Hepatitis Viral/inmunología
18.
J Virol ; 91(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28031364

RESUMEN

The hepatitis C virus (HCV) envelope glycoprotein E2 is the major target of broadly neutralizing antibodies in vivo and is the focus of efforts in the rational design of a universal B cell vaccine against HCV. The E2 glycoprotein exhibits a high degree of amino acid variability which localizes to three discrete regions: hypervariable region 1 (HVR1), hypervariable region 2 (HVR2), and the intergenotypic variable region (igVR). All three variable regions contribute to immune evasion and/or isolate-specific structural variations, both important considerations for vaccine design. A high-resolution structural definition of the intact HCV envelope glycoprotein complex containing E1 and E2 remains to be elucidated, while crystallographic structures of a recombinant E2 ectodomain failed to resolve HVR1, HVR2, and a major neutralization determinant adjacent to HVR1. To obtain further information on E2, we characterized the role of all three variable regions in E2 ectodomain folding and function in the context of a recombinant ectodomain fragment (rE2). We report that removal of the variable regions accelerates binding to the major host cell receptor CD81 and that simultaneous deletion of HVR2 and the igVR is required to maintain wild-type CD81-binding characteristics. The removal of the variable regions also rescued the ability of rE2 to form a functional homodimer. We propose that the rE2 core provides novel insights into the role of the variable motifs in the higher-order assembly of the E2 ectodomain and may have implications for E1E2 structure on the virion surface. IMPORTANCE Hepatitis C virus (HCV) infection affects ∼2% of the population globally, and no vaccine is available. HCV is a highly variable virus, and understanding the presentation of key antigenic sites at the virion surface is important for the design of a universal vaccine. This study investigates the role of three surface-exposed variable regions in E2 glycoprotein folding and function in the context of a recombinant soluble ectodomain. Our data demonstrate the variable motifs modulate binding of the E2 ectodomain to the major host cell receptor CD81 and have an impact on the formation of an E2 homodimer with high-affinity binding to CD81.


Asunto(s)
Hepacivirus/fisiología , Proteínas del Envoltorio Viral/química , Internalización del Virus , Regulación Alostérica , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Línea Celular Tumoral , Epítopos/química , Epítopos/inmunología , Células HEK293 , Hepatocitos/virología , Humanos , Cinética , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Tetraspanina 28/química , Proteínas del Envoltorio Viral/fisiología
19.
Hepatology ; 65(4): 1117-1131, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27997681

RESUMEN

A vaccine that prevents hepatitis C virus (HCV) infection is urgently needed to support an emerging global elimination program. However, vaccine development has been confounded because of HCV's high degree of antigenic variability and the preferential induction of type-specific immune responses with limited potency against heterologous viral strains and genotypes. We showed previously that deletion of the three variable regions from the E2 receptor-binding domain (Δ123) increases the ability of human broadly neutralizing antibodies (bNAbs) to inhibit E2-CD81 receptor interactions, suggesting improved bNAb epitope exposure. In this study, the immunogenicity of Δ123 was examined. We show that high-molecular-weight forms of Δ123 elicit distinct antibody specificities with potent and broad neutralizing activity against all seven HCV genotypes. Antibody competition studies revealed that immune sera raised to high-molecular-weight Δ123 was poly specific, given that it inhibited the binding of human bNAbs directed to three major neutralization epitopes on E2. By contrast, the immune sera raised to monomeric Δ123 predominantly blocked the binding of a non-neutralizing antibody to Δ123, while having reduced ability to block bNAb binding to E2, and neutralization was largely toward the homologous genotype. This increased ability of oligomeric Δ123 to generate bNAbs correlates with occlusion of the non-neutralizing face of E2 in this glycoprotein form. CONCLUSION: The results from this study reveal new information on the antigenic and immunogenic potential of E2-based immunogens and provide a pathway for the development of a simple, recombinant protein-based prophylactic vaccine for HCV with potential for universal protection. (Hepatology 2017;65:1117-1131).


Asunto(s)
Hepacivirus/genética , Hepatitis C/genética , Proteínas del Envoltorio Viral/genética , Vacunas contra Hepatitis Viral/farmacología , Animales , Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos/genética , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Epítopos/genética , Genotipo , Cobayas , Hepacivirus/inmunología , Hepatitis C/inmunología , Anticuerpos contra la Hepatitis C/inmunología , Distribución Aleatoria , Estadísticas no Paramétricas , Proteínas del Envoltorio Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA