Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
N Engl J Med ; 384(10): 924-935, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33704937

RESUMEN

BACKGROUND: Genomic analysis is essential for risk stratification in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS). Whole-genome sequencing is a potential replacement for conventional cytogenetic and sequencing approaches, but its accuracy, feasibility, and clinical utility have not been demonstrated. METHODS: We used a streamlined whole-genome sequencing approach to obtain genomic profiles for 263 patients with myeloid cancers, including 235 patients who had undergone successful cytogenetic analysis. We adapted sample preparation, sequencing, and analysis to detect mutations for risk stratification using existing European Leukemia Network (ELN) guidelines and to minimize turnaround time. We analyzed the performance of whole-genome sequencing by comparing our results with findings from cytogenetic analysis and targeted sequencing. RESULTS: Whole-genome sequencing detected all 40 recurrent translocations and 91 copy-number alterations that had been identified by cytogenetic analysis. In addition, we identified new clinically reportable genomic events in 40 of 235 patients (17.0%). Prospective sequencing of samples obtained from 117 consecutive patients was performed in a median of 5 days and provided new genetic information in 29 patients (24.8%), which changed the risk category for 19 patients (16.2%). Standard AML risk groups, as defined by sequencing results instead of cytogenetic analysis, correlated with clinical outcomes. Whole-genome sequencing was also used to stratify patients who had inconclusive results by cytogenetic analysis into risk groups in which clinical outcomes were measurably different. CONCLUSIONS: In our study, we found that whole-genome sequencing provided rapid and accurate genomic profiling in patients with AML or MDS. Such sequencing also provided a greater diagnostic yield than conventional cytogenetic analysis and more efficient risk stratification on the basis of standard risk categories. (Funded by the Siteman Cancer Research Fund and others.).


Asunto(s)
Análisis Citogenético , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Secuenciación Completa del Genoma , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Análisis de Supervivencia , Secuenciación Completa del Genoma/métodos
2.
Nature ; 486(7403): 353-60, 2012 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22722193

RESUMEN

To correlate the variable clinical features of oestrogen-receptor-positive breast cancer with somatic alterations, we studied pretreatment tumour biopsies accrued from patients in two studies of neoadjuvant aromatase inhibitor therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to haematopoietic disorders. Mutant MAP3K1 was associated with luminal A status, low-grade histology and low proliferation rates, whereas mutant TP53 was associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon aromatase inhibitor treatment. Pathway analysis demonstrated that mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in oestrogen-receptor-positive breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumour biology, but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing.


Asunto(s)
Inhibidores de la Aromatasa/uso terapéutico , Aromatasa/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Genoma Humano/genética , Anastrozol , Androstadienos/farmacología , Androstadienos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Reparación del ADN , Exoma/genética , Exones/genética , Femenino , Variación Genética/genética , Humanos , Letrozol , MAP Quinasa Quinasa 4/genética , Quinasa 1 de Quinasa de Quinasa MAP/genética , Mutación/genética , Nitrilos/farmacología , Nitrilos/uso terapéutico , Receptores de Estrógenos/metabolismo , Resultado del Tratamiento , Triazoles/farmacología , Triazoles/uso terapéutico
3.
PLoS Comput Biol ; 11(7): e1004274, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26158448

RESUMEN

In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Humano/genética , Bases del Conocimiento , Modelos Genéticos , Análisis de Secuencia de ADN/métodos , Interfaz Usuario-Computador , Algoritmos , Simulación por Computador , Sistemas de Administración de Bases de Datos , Bases de Datos Genéticas , Humanos , Alineación de Secuencia/métodos
4.
Nat Genet ; 36(12): 1268-74, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15531882

RESUMEN

Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their approximately 4,400 protein coding sequences: 173 in Paratyphi A and approximately 210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Bacteriano , Mutación/genética , Salmonella paratyphi A/genética , Salmonella typhi/genética , Secuencia de Bases , Biblioteca de Genes , Componentes Genómicos/genética , Humanos , Análisis por Micromatrices , Datos de Secuencia Molecular , Seudogenes/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
5.
N Engl J Med ; 361(11): 1058-66, 2009 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-19657110

RESUMEN

BACKGROUND: The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known. METHODS: We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. RESULTS: We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. CONCLUSIONS: By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.


Asunto(s)
Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Mutación , Adulto , Análisis Mutacional de ADN , Femenino , Frecuencia de los Genes , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Nucleofosmina , Mutación Puntual , Análisis de Secuencia de ADN/métodos
6.
Nature ; 434(7034): 724-31, 2005 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-15815621

RESUMEN

Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.6% of their euchromatic sequences. Our initial analyses have identified 1,346 protein-coding genes and 1,239 pseudogenes on chromosome 2, and 796 protein-coding genes and 778 pseudogenes on chromosome 4. Extensive analyses confirm the underlying construction of the sequence, and expand our understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.


Asunto(s)
Cromosomas Humanos Par 2/genética , Cromosomas Humanos Par 4/genética , Animales , Composición de Base , Secuencia de Bases , Centrómero/genética , Secuencia Conservada/genética , Islas de CpG/genética , Eucromatina/genética , Etiquetas de Secuencia Expresada , Duplicación de Gen , Variación Genética/genética , Genómica , Humanos , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Polimorfismo Genético/genética , Primates/genética , Proteínas/genética , Seudogenes/genética , ARN Mensajero/análisis , ARN Mensajero/genética , ARN no Traducido/análisis , ARN no Traducido/genética , Recombinación Genética/genética , Análisis de Secuencia de ADN
7.
Nature ; 424(6945): 157-64, 2003 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-12853948

RESUMEN

Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame.


Asunto(s)
Cromosomas Humanos Par 7 , Animales , Secuencia de Bases , Duplicación de Gen , Humanos , Ratones , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Proteínas/genética , Seudogenes , ARN no Traducido , Análisis de Secuencia de ADN , Especificidad de la Especie , Síndrome de Williams/genética
8.
Sci Rep ; 9(1): 14549, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601925

RESUMEN

We assessed the three-dimensional (3D) pattern of the physiologic drift of the remaining adjacent teeth after premolar extraction due to orthodontic reasons and the associated factors. Data were collected from 45 patients aged 17.04 ± 5.14 years who were scheduled to receive a fixed appliance after maxillary premolar extraction. Seventy-five drift models were obtained and digitalized via 3D scanning. The average physiologic drift duration was 81.66 ± 70.03 days. Angular and linear changes in the first molars, second premolars, and canines were measured using the 3D method. All the examined teeth had tipped and moved towards the extraction space, leading to space decreases. Posterior teeth primarily exhibited significant mesial tipping and displacement, without rotation or vertical changes. All canine variables changed, including distal inward rotation and extrusion. The physiologic drift tended to slow over time. Age had a limited negative effect on the mesial drift of posterior teeth, whereas crowding had a limited positive effect on canine drift. Thus, the mesial drift of molars after premolar extraction may lead to molar anchorage loss, particularly among younger patients. The pattern of the physiologic drift of maxillary canines can help relieve crowding and facilitate labially ectopic canine alignment, whereas canine drift is accelerated by more severe crowding.


Asunto(s)
Diente Premolar/cirugía , Imagenología Tridimensional , Extracción Dental , Migración del Diente , Adolescente , Adulto , Cefalometría , Niño , Femenino , Humanos , Masculino , Ortodoncia , Análisis de Regresión , Adulto Joven
9.
Genetics ; 177(2): 1173-92, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17660568

RESUMEN

We have sequenced five distinct mitochondrial genomes in maize: two fertile cytotypes (NA and the previously reported NB) and three cytoplasmic-male-sterile cytotypes (CMS-C, CMS-S, and CMS-T). Their genome sizes range from 535,825 bp in CMS-T to 739,719 bp in CMS-C. Large duplications (0.5-120 kb) account for most of the size increases. Plastid DNA accounts for 2.3-4.6% of each mitochondrial genome. The genomes share a minimum set of 51 genes for 33 conserved proteins, three ribosomal RNAs, and 15 transfer RNAs. Numbers of duplicate genes and plastid-derived tRNAs vary among cytotypes. A high level of sequence conservation exists both within and outside of genes (1.65-7.04 substitutions/10 kb in pairwise comparisons). However, sequence losses and gains are common: integrated plastid and plasmid sequences, as well as noncoding "native" mitochondrial sequences, can be lost with no phenotypic consequence. The organization of the different maize mitochondrial genomes varies dramatically; even between the two fertile cytotypes, there are 16 rearrangements. Comparing the finished shotgun sequences of multiple mitochondrial genomes from the same species suggests which genes and open reading frames are potentially functional, including which chimeric ORFs are candidate genes for cytoplasmic male sterility. This method identified the known CMS-associated ORFs in CMS-S and CMS-T, but not in CMS-C.


Asunto(s)
Fertilidad/genética , Genes de Plantas/genética , Genoma Mitocondrial , Infertilidad/genética , Zea mays/genética , Secuencia de Bases , Secuencia Conservada , Reordenamiento Génico , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , ARN Ribosómico/genética , ARN de Transferencia/genética
10.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 47(12): 753-7, 2012 Dec.
Artículo en Zh | MEDLINE | ID: mdl-23328103

RESUMEN

OBJECTIVE: To evaluate Beijing college students' concern and preference for maxillary anterior tooth esthetic factors. METHODS: Several images about lip and tooth were made through computer. A questionnaire was sent out to students in ten colleges and then collected. There were five factors to be evaluated: relationship of maxillary incisors and lower lip, numbers of tooth exposed, shape of centric incisor, crown width-length ratio, gingival margin. Concern of the beauty of anterior tooth, ie. tooth shape, tooth arrangement, shape of gingiva and so on, were then analyzed. RESULTS: There were 408 responses collected, and 47.5% (194/408) of them preferred light contact between upper incisors and lower lip; 49.5% (202/408) preferred 8 tooth exposed when smile; 69.1% (282/408) preferred oval crown shape; 52.5% (214/408) preferred 0.85 as a crown width-length ratio; 49.5% (202/408)of responses chose the curve of gingiva runs horizontal. The average score of concern for male was 52.6% (100/190), for female was 59.6% (130/218). CONCLUSIONS: Most results from this study accord with the classical principles of tooth esthetics. Sex affects the concern and preferences of maxillary anterior tooth esthetics factors.


Asunto(s)
Estética Dental , Odontometría/métodos , Sonrisa , Adulto , China , Femenino , Encía/anatomía & histología , Humanos , Incisivo/anatomía & histología , Labio/anatomía & histología , Masculino , Maxilar/anatomía & histología , Prioridad del Paciente , Factores Sexuales , Encuestas y Cuestionarios , Corona del Diente/anatomía & histología , Adulto Joven
11.
Science ; 326(5956): 1112-5, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19965430

RESUMEN

We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.


Asunto(s)
Variación Genética , Genoma de Planta , Análisis de Secuencia de ADN , Zea mays/genética , Secuencia de Bases , Centrómero/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Productos Agrícolas/genética , Variaciones en el Número de Copia de ADN , Metilación de ADN , Elementos Transponibles de ADN , ADN de Plantas/genética , Genes de Plantas , Endogamia , MicroARNs/genética , Datos de Secuencia Molecular , Ploidias , ARN de Planta/genética , Recombinación Genética , Retroelementos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA