RESUMEN
Temperature has a profound influence on plant and animal development, but its effects on stem cell behavior and activity remain poorly understood. Here, we characterize the responses of the Arabidopsis root to chilling (low but above-freezing) temperature. Chilling stress at 4°C leads to DNA damage predominantly in root stem cells and their early descendants. However, only newly generated/differentiating columella stem cell daughters (CSCDs) preferentially die in a programmed manner. Inhibition of the DNA damage response in these CSCDs prevents their death but makes the stem cell niche more vulnerable to chilling stress. Mathematical modeling and experimental validation indicate that CSCD death results in the re-establishment of the auxin maximum in the quiescent center (QC) and the maintenance of functional stem cell niche activity under chilling stress. This mechanism improves the root's ability to withstand the accompanying environmental stresses and to resume growth when optimal temperatures are restored.
Asunto(s)
Arabidopsis/fisiología , Raíces de Plantas/citología , Células Madre/citología , División Celular , Frío , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , Nicho de Células Madre , Estrés FisiológicoRESUMEN
Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of the coronavirus family and caused severe economic losses to the global swine industry. Previous studies have established that p53 is a host restriction factor for PEDV infection, and p53 degradation occurs in PEDV-infected cells. However, the underlying molecular mechanisms through which PEDV viral proteins regulate p53 degradation remain unclear. In this study, we found that PEDV infection or expression of the nucleocapsid protein downregulates p53 through a post-translational mechanism: increasing the ubiquitination of p53 and preventing its nuclear translocation. We also show that the PEDV N protein functions by recruiting the E3 ubiquitin ligase COP1 and suppressing COP1 self-ubiquitination and protein degradation, thereby augmenting COP1-mediated degradation of p53. Additionally, COP1 knockdown compromises N-mediated p53 degradation. Functional mapping using truncation analysis showed that the N-terminal domains of N protein were responsible for interacting with COP1 and critical for COP1 stability and p53 degradation. The results presented here suggest the COP1-dependent mechanism for PEDV N protein to abolish p53 activity. This study significantly increases our understanding of PEDV in antagonizing the host antiviral factor p53 and will help initiate novel antiviral strategies against PEDV.
Asunto(s)
Proteínas de la Nucleocápside , Virus de la Diarrea Epidémica Porcina , Proteolisis , Proteína p53 Supresora de Tumor , Ubiquitina-Proteína Ligasas , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Virus de la Diarrea Epidémica Porcina/metabolismo , Animales , Humanos , Proteínas de la Nucleocápside/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Chlorocebus aethiops , Células HEK293 , Porcinos , Células VeroRESUMEN
Lung cancer is the leading cause of cancer-related death, with high morbidity and mortality rates due to the lack of reliable methods for diagnosing lung cancer at an early stage. Low-dose computed tomography can help detect abnormal areas in the lungs, but only 16% of cases are diagnosed early. Tests for lung cancer markers are often employed to determine genetic expression or mutations in lung carcinogenesis. Serum glycome analysis is a promising new method for early lung cancer diagnosis as glycopatterns exhibit significant differences in lung cancer patients. In this study, we employed a solid-phase chemoenzymatic method to systematically compare glycopatterns in benign cases, adenocarcinoma before and after surgery, and advanced stages of adenocarcinoma. Our findings indicate that serum high-mannose levels are elevated in both benign cases and adenocarcinoma, while complex N-glycans, including fucose and 2,6-linked sialic acid, are downregulated in the serum. Subsequently, we developed an algorithm that utilizes 16 altered N-glycans, 7 upregulated and 9 downregulated, to generate a score based on their intensity. This score can predict the stages of cancer progression in patients through glycan characterization. This methodology offers a potential means of diagnosing lung cancer through serum glycome analysis.
Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Polisacáridos/metabolismo , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , FucosaRESUMEN
BACKGROUND AND AIMS: China is an endemic area for hepatitis E virus (HEV) infection. Estimating the prevalence and incidence of HEV infection in China plays a pivotal role in informing public health policies to prevent and control hepatitis E. This study aimed to investigate the prevalence of anti-HEV IgG and incidence of HEV seroconversion in China. METHODS: This study was based on the Meinian health check-up database in China. Participants who underwent testing for anti-HEV IgG at check-up centers in 24 provinces between 2017 and 2022 were included. In the cross-sectional analyses, overall prevalence and stratified prevalence in subpopulations with various characteristics were estimated and standardized according to the 2020 census of the Chinese population. In the longitudinal analyses, the occurrence of anti-HEV IgG positivity during the follow-up was defined as an incident HEV seroconversion. Overall and stratified incidence rates were estimated and expressed as per 100 person-years. Poisson regression was used to explore risk factors associated with HEV seroconversion. RESULTS: A total of 85,238 and 11,154 participants were included in the cross-sectional and longitudinal analyses, respectively. The prevalence of anti-HEV IgG in the general population was 18.02%. During a median follow-up of 1.2 years, the incidence rate of HEV seroconversion was 1.79 per 100 person-years. Age ≥60 years, low socioeconomic status, living in coastal areas, living in areas with high drainage density, and living in areas with high anti-HEV IgG prevalence were independent risk factors for HEV seroconversion. CONCLUSIONS: Our findings would help inform policymaking for hepatitis E prevention and control in China as well as in other endemic regions of the world.
RESUMEN
Cellulose nanocrystal (CNC), as a renewable resource, with excellent mechanical performance, low thermal expansion coefficient, and unique optical performance, is becoming a novel candidate for the development of smart material. Herein, the recent progress of CNC-based chirality nanomaterials is uncovered, mainly covering structure regulations and function design. Undergoing a simple evaporation process, the cellulose nanorods can spontaneously assemble into chiral nematic films, accompanied by a vivid structural color. Various film structure-controlling strategies, including assembly means, physical modulation, additive engineering, surface modification, geometric structure regulation, and external field optimization, are summarized in this work. The intrinsic correlation between structure and performance is emphasized. Next, the applications of CNC-based nanomaterials is systematically reviewed. Layer-by-layer stacking structure and unique optical activity endow the nanomaterials with wide applications in the mineralization, bone regeneration, and synthesis of mesoporous materials. Besides, the vivid structural color broadens the functions in anti-counterfeiting engineering, synthesis of the shape-memory and self-healing materials. Finally, the challenges for the CNC-based nanomaterials are proposed.
RESUMEN
BACKGROUND: The coronavirus disease 2019 (COVID-19) has become a serious public health issue. In COVID-19 patients, the elevated levels of inflammatory cytokines lead to the manifestation of COVID-19 symptoms, such as lung tissue edema, lung diffusion dysfunction, acute respiratory distress syndrome (ARDS), secondary infection, and ultimately mortality. Mesenchymal stem cells (MSCs) exhibit anti-inflammatory and immunomodulatory properties, thus providing a potential treatment option for COVID-19. The number of clinical trials of MSCs for COVID-19 has been rising. However, the treatment protocols and therapeutic effects of MSCs for COVID-19 patients are inconsistent. This meta-analysis was performed to systematically determine the safety and efficacy of MSC infusion in COVID-19 patients. METHODS: We conducted a comprehensive literature search from PubMed/Medline, Web of Science, EMBASE, and Cochrane Library up to 22 November 2023 to screen for eligible randomized controlled trials. Inclusion and exclusion criteria for searched literature were formulated according to the PICOS principle, followed by the use of literature quality assessment tools to assess the risk of bias. Finally, outcome measurements including therapeutic efficacy, clinical symptoms, and adverse events of each study were extracted for statistical analysis. RESULTS: A total of 14 randomized controlled trials were collected. The results of enrolled studies demonstrated that patients with COVID-19 pneumonia who received MSC inoculation showed a decreased mortality compared with counterparts who received conventional treatment (RR: 0.76; 95% CI [0.60, 0.96]; p = 0.02). Reciprocally, MSC inoculation improved the clinical symptoms in patients (RR: 1.28; 95% CI [1.06, 1.55]; p = 0.009). In terms of immune biomarkers, MSC treatment inhibited inflammation responses in COVID-19 patients, as was indicated by the decreased levels of CRP and IL-6. Importantly, our results showed that no significant differences in the incidence of adverse reactions or serious adverse events were monitored in patients after MSC inoculation. CONCLUSION: This meta-analysis demonstrated that MSC inoculation is effective and safe in the treatment of patients with COVID-19 pneumonia. Without increasing the incidence of adverse events or serious adverse events, MSC treatment decreased patient mortality and inflammatory levels and improved the clinical symptoms in COVID-19 patients. However, large-cohort randomized controlled trials with expanded numbers of patients are required to further confirm our results.
Asunto(s)
COVID-19 , Trasplante de Células Madre Mesenquimatosas , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Humanos , COVID-19/terapia , COVID-19/inmunología , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Resultado del Tratamiento , Células Madre MesenquimatosasRESUMEN
Osteoarthritis (OA) is a chronic inflammatory joint disorder characterized by cartilage degradation and bone remodeling. This study investigated the regulatory role of metallothionein 1 (MT1) in modulating immune responses and the balance between regulatory T cells (Treg) and T helper 17 cells (Th17) in OA. Peripheral blood mononuclear cells (PBMCs) from healthy individuals and OA patients were assessed for cytokine expression linked to Treg/Th17 homeostasis. OA was induced in wild-type (WT) and Mt1 knockout (MT1KO) mice via surgical destabilization of the medial meniscus. Clinical scores, pathological features, inflammatory cytokines, and Treg/Th17 balance were evaluated. MT1KO mice showed significantly elevated Mt1, pro-inflammatory cytokines (IL-1, IL-6, TNF-α) and exacerbated OA progression, characterized by increased knee joint diameter, inflammatory infiltration, and cartilage destruction. Mechanistically, disrupted Treg/Th17 balance played a pivotal role in OA exacerbation, with MT1KO promoting Th17 differentiation and reducing Treg populations. Additionally, the compensatory elevation of anti-inflammatory interleukin-10 (IL-10) in OA patients hinted at a nuanced immune regulatory mechanism. The study illuminates intricate interactions involving MT1, Treg/Th17 cells, and pro-inflammatory cytokines in OA pathogenesis, suggesting MT1's potential as a pivotal regulatory factor and a therapeutic target for mitigating immune dysregulation in OA.
RESUMEN
STUDY QUESTION: Can novel genetic factors contributing to early embryonic arrest in infertile patients be identified, along with the underlying mechanisms of the pathogenic variant? SUMMARY ANSWER: We identified a heterozygous variant in the SPRY4 (sprouty RTK signaling antagonist 4) in infertile patients and conducted in vitro and in vivo studies to investigate the effects of the variant/deletion, highlighting its critical role in female reproductive health. WHAT IS KNOWN ALREADY: SPRY4 acts as a negative regulator of receptor tyrosine kinases (RTKs) and functions as a tumor suppressor. Its abnormal expression can lead to recurrent miscarriage by affecting trophoblast function. In mice, Spry4 knockout (KO) leads to craniofacial anomalies and growth defects. A human study links the SPRY4 variant to a male patient with isolated hypogonadotropic hypogonadism (IHH), hypothetically impacting gonadotropin-releasing hormone (GnRH) neurons, and causing reproductive dysfunctions. SPRY4 is thus potentially integral in regulating endocrine homeostasis and reproductive function. To date, no study has reported SPRY4 variants associated with female fertility, and a causal relationship has not been established with functional evidence. STUDY DESIGN, SIZE, DURATION: Whole-exome sequencing (WES) was performed in 392 infertile women who suffered from primary infertility of unknown reason, and the heterozygous SPRY4 variant were identified in one independent family. The infertile patients presenting were recruited from July 2017 to November 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women diagnosed with primary infertility were recruited from the Reproduction Center of Zhongshan Hospital, Fudan University. Genomic DNA was extracted from peripheral blood for WES analysis. The SPRY4 variant were identified through WES, in silico analysis, and variant screening. All variants were confirmed by Sanger sequencing. The effects of the variants were investigated in human embryonic kidney (HEK) 293T (HEK293T) cells via western blotting, and in mouse oocytes and embryos through complementary RNA (cRNA) injection, RNA sequencing, fluorescence, absorbance, and RT-qPCR assays. Gene function was further examined in Spry4 KO mice via histology, western blotting, ELISA, and RT-qPCR assays. MAIN RESULTS AND THE ROLE OF CHANCE: We identified a missense heterozygous pathogenic variant in SPRY4 (GRCh38, GenBank: NM_030964.5, c.157C>T p.(Arg53Trp), rs200531302) that reduces SPRY4 protein levels in HEK293T cells and disrupts the redox system and mitochondrial function in mouse oocyte, and perturbs developmental potential in mouse embryos. These phenotypes could be partially reversed by the exogenous addition of Nrf1 cRNA. Additionally, Spry4-/- mice exhibit ovarian oxidative stress and decreased ovarian function. LIMITATIONS, REASONS FOR CAUTION: Due to the limited WES data and population, we identified only one family with a SPRY4 mutation. The deeper mechanism and therapeutic strategy should be further investigated through mutant mice and recovery experiment. WIDER IMPLICATIONS OF THE FINDINGS: Our study has identified a pathogenic variant in SPRY4 associated with early embryonic arrest in humans. These findings enhance our understanding of the role of SPRY4 in early embryonic development and present a new genetic marker for female infertility. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Natural Science Foundation of China (82071643 and 82171655) and Natural Science Foundation of Shanghai (22ZR1456200). None of the authors have any competing interests. TRIAL REGISTRATION NUMBER: N/A.
RESUMEN
Acute lung injury (ALI) is a serious respiratory disease characterized by diffuse alveolar injury, and it has emerged as a major concern in clinical practice due to limited treatments. This study aimed to explore the pharmacological effects and regulatory mechanism of sappanone A (SA) on ALI. In vivo, mice were administered with SA followed by intratracheal injection of lipopolysaccharide (LPS) to establish an animal model of ALI. We observed that SA exerted comparable anti-inflammatory effects to dexamethasone, as evidenced by effectively mitigating histopathological abnormalities and suppressing the inflammatory response in the lung tissues of mice with ALI. RNA sequencing analysis revealed that SA significantly inhibited the activation of the nuclear factor kappa B (NF-κB) signaling pathway. In vitro, we found that SA protected BEAS-2B cells against LPS-induced cellular injury and reduced inflammatory cytokine generation. Furthermore, both in vivo and in vitro experiments demonstrated that SA effectively prevented LPS-induced oxidative stress and apoptosis. Consistent with the results of the RNA sequencing analysis, SA significantly inhibited the increased protein expressions of p105, p50, c-REL, as well as the ratios of p-p65/p65 and p-IκBα/IκBα in the lung tissues of mice with ALI and LPS-stimulated BEAS-2B cells. Additionally, SA inhibited the nuclear translocation of p65 in BEAS-2B cells stimulated with LPS. Importantly, specific blockade of the NF-κB signaling pathway using BAY11-7082 was identified to alleviate LPS-induced cellular injury in BEAS-2B cells. Collectively, these findings suggest that SA can ameliorate ALI, at least in part, through the inhibition of NF-κB signaling pathway activation.
RESUMEN
Paraquat (PQ) is an irreplaceable insecticide in many countries for the advantage of fast-acting and broad-spectrum. However, PQ was classified as the most prevailing poisoning substance for suicide with no specific antidote. Therefore, it is imperative to develop more effective therapeutic agents for the treatment of PQ poisoning. In the present study, both the RNA-Seq and the application of various cell death inhibitors reflected that ferroptosis exerts a crucial regulatory role in PQ poisoning. Moreover, we found PQ strengthens lipid peroxidation as evidenced by different experimental approaches. Of note, pretreatment of iron chelation agent DFO could ameliorate the ferroptotic cell death and alleviate the ferroptosis-related events. Mechanistically, PQ treatment intensively impaired mitochondrial homeostasis, enhanced phosphorylation of AMPK, accelerated the autophagy flux and triggered the activation of Nuclear receptor coactivator 4-ferritin heavy chain (NCOA4-FTH) axis. Importantly, the activation of autophagy was observed prior to the degradation of ferritin, and inhibition of autophagy could inhibit the accumulation of iron caused by the ferritinophagy process. Genetic and pharmacological inhibition of ferritinophagy could alleviate the lethal oxidative events, and rescue the ferroptotic cell death. Excitingly, in the mouse models of PQ poisoning, both the administration of DFO and adeno-associated virus-mediated FTH overexpression significantly reduced PQ-induced ferroptosis and improved the pathological characteristics of pulmonary fibrosis. In summary, the current work provides an in-depth study on the mechanism of PQ intoxication, describes a framework for the further understanding of ferroptosis in PQ-associated biological processes, and demonstrates modulation of iron metabolism may act as a promising therapeutic agent for the management of PQ toxicity.
Asunto(s)
Ferroptosis , Lesión Pulmonar , Animales , Humanos , Ratones , Autofagia , Ferritinas/metabolismo , Ferritinas/farmacología , Hierro/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Coactivadores de Receptor Nuclear/metabolismo , Paraquat/toxicidad , Factores de Transcripción/metabolismoRESUMEN
We report the case of a Chinese male with schizoaffective disorder, an active smoker and a nonresponder to clozapine (600 mg daily). Therapeutic clozapine monitoring was analyzed, revealing a low concentration-dose ratio. A pharmacogenetic test showed that the patient had the CYP1A2*1F/*1F genotype, indicating an ultra-rapid clozapine metabolizer. In combination with fluvoxamine, a CYP1A2 enzyme inhibitor, clozapine plasma concentrations approached the reference range and achieved clinical improvement. This case demonstrates how pharmacogenetics can help understand the value of therapeutic drug monitoring to enhance the treatment of refractory schizoaffective disorder.
Asunto(s)
Antipsicóticos , Trastorno Bipolar , Clozapina , Trastornos Psicóticos , Masculino , Humanos , Clozapina/uso terapéutico , Citocromo P-450 CYP1A2/genética , Antipsicóticos/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/genética , Pruebas GenéticasRESUMEN
BACKGROUND: Unfolded protein response (UPR) is a multifaceted signaling cascade that alleviates protein misfolding. Although well studied in nucleated cells, UPR in absence of transcriptional regulation has not been described. Intricately associated with cardiovascular diseases, platelets, despite being anucleate, respond rapidly to stressors in blood. We investigate the UPR in anucleate platelets and explore its role, if any, on platelet physiology and function. METHODS: Human and mouse platelets were studied using a combination of ex vivo and in vivo experiments. Platelet lineage-specific knockout mice were generated independently for each of the 3 UPR pathways, PERK (protein kinase RNA [PKR]-like endoplasmic reticulum kinase), XBP1 (X-binding protein), and ATF6 (activating transcription factor 6). Diabetes patients were prospectively recruited, and platelets were evaluated for activation of UPR under chronic pathophysiological disease conditions. RESULTS: Tunicamycin induced the IRE1α (inositol-requiring enzyme-1alpha)-XBP1 pathway in human and mouse platelets, while oxidative stress predominantly activated the PERK pathway. PERK deletion significantly increased platelet aggregation and apoptosis and phosphorylation of PLCγ2, PLCß3, and p38 MAPK. Deficiency of XBP1 increased platelet aggregation, with higher PLCß3 and PKCδ activation. ATF6 deletion mediated a relatively modest effect on platelet phenotype with increased PKA (protein kinase A). Platelets from diabetes patients exhibited a positive correlation between disease severity, platelet activation, and protein aggregation, with only IRE1α-XBP1 activation. Moreover, IRE1α inhibition increased platelet aggregation, while clinically approved chemical chaperone, sodium 4-phenylbutyrate reduced the platelet hyperactivation. CONCLUSIONS: We show for the first time, that UPR activation occurs in platelets and can be independent of genomic regulation, with selective induction being specific to the source and severity of stress. Each UPR pathway plays a key role and can differentially modulate the platelet activation pathways and phenotype. Targeting the specific arms of UPR may provide a new antiplatelet strategy to mitigate thrombotic risk in diabetes and other cardiovascular diseases.
Asunto(s)
Enfermedades Cardiovasculares , Endorribonucleasas , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Humanos , Ratones , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo , eIF-2 QuinasaRESUMEN
In situ ligand transformation strategies represent an efficient pathway for constructing function-oriented polyoxometalate (POM)-based crystalline materials. Herein, three POM-based hybrid networks were synthesized through in situ transformation of the phosphine ligand, formulated as [Ag(dppeo)6][H2PMo12O40]·5H2O (1), [Ag(dedpo)]4[SiW12O40]·6H2O (2), and [Ag(dppeo)]3[PW12O40]·3H2O (3) (dedpo = (2-(diphenylphosphaneyl)ethyl)diphenylphosphine oxide; dppeo = ethane-1,2-diylbis(diphenylphosphine oxide)). During the synthesis of these compounds, the 1,2-diphenylphosphine ethane molecule underwent in situ oxidation, transforming into dppeo and dedpo ligands, respectively. Compound 1 features a supramolecular architecture assembled from [Ag(dppeo)3]+/[Ag2(dppeo)6]2+ cationic clusters with disordered Ag centers and protonated [H2PMo12O40]- anions. Compound 2 presents a 3-D POM-supported metal-organic framework consisting of binuclear [Ag(dedpo)]22+ units, {-dedpo-Ag-dedpo-} chains, and [SiW12O40]4- polyoxoanions. Compound 3 displays a 2-D layered structure formed by {-dppeo-Ag3-dppeo-} chains and [PW12O40]3- clusters. Pronounced argentophilic interactions are observed in compounds 1 and 3. The three compounds demonstrate satisfactory heterogeneous catalytic activity in the colorimetric detection reactions toward phenol pollutants with detection limits of 1.73, 1.92, and 4.6 µM, respectively. Additionally, compounds 1-3 show high anti-interference capabilities and high sensitivity in differentiating phenol from its halogenated derivatives. This work presents some guidance for designing specific function-oriented POM-based materials via an in situ ligand transformation strategy.
RESUMEN
Fluorinated liquid-crystal monomers (FLCMs) are a potential emerging class of persistent, bioaccumulative, and toxic compounds. Humans inevitably ingest FLCMs via food and the environment. However, there are limited studies on internal exposure biomonitoring of FLCMs. Herein, we evaluated the estimated daily intakes (EDIs) of FLCMs in the general population based on serum residue levels. For the first time, 38 FLCMs were detected in 314 serum samples from the general population in Beijing, with a median value of 132.48 ng/g of lipid weight (lw). BDPrB is a predominant FLCM in serum. The median EDI of ∑38FLCMs in the general residents was 37.96 pg/kg bw/day. The residual levels of most FLCMs were higher in urban than in suburban areas (p < 0.05). The concentrations of EFPEB, EDPrB, EDFPBB, and PDTFMTFT in serum showed positive associations with blood glucose (GLU) (r = 0.126-0.275, p < 0.05). Logistic regression analysis showed that FLCMs were significantly positively correlated with dyslipidemia, with an odds ratio of 2.19; BDPrB was significantly positively correlated with hyperglycemia (OR: 2.48). Overall, the present study suggests the occurrence of FLCMs in the nonoccupational population, and the exposure of certain FLCMs may cause abnormal blood glucose and lipid levels.
Asunto(s)
Cristales Líquidos , Suero , Femenino , Humanos , Masculino , Cristales Líquidos/análisis , Suero/químicaRESUMEN
OBJECTIVE: This paper was aimed at unveiling the effect of low-molecular-weight heparin calcium (LMWH) combined with magnesium sulfate and labetalol on coagulation, vascular endothelial function, and pregnancy outcome in early-onset severe preeclampsia (EOSP). METHODS: Pregnant women with EOSP were divided into the control group and the study group, each with 62 cases. Patients in the control group were treated with labetalol and magnesium sulfate, and those in the study group were treated with LMWH in combination with the control grou Blood pressure (systolic blood pressure [SBP] and diastolic blood pressure [DBP]), 24-h urine protein, coagulation indices [D-dimer (D-D), plasma fibrinogen (Fg), prothrombin time (PT), activated partial thromboplastin time (APTT), and prothrombin time (TT)], endothelial function [endothelin (ET-1) and nitric oxide (NO)], oxidative stress indices [oxidized low-density lipoproteins (ox-LDL), lipid peroxidation (LPO), superoxide dismutase (SOD), and malondialdehyde (MDA)], pregnancy outcome, and adverse effects occurred in the two groups were compared. RESULTS: After treatment, lower SBP, DBP, and 24-h urine protein levels; lower Fg and D-D levels; higher PT, APPT, and TT levels; higher NO levels; lower ET-1 levels; lower ox-LDL, MDA, and LPO levels; higher SOD levels; and lower incidence of adverse pregnancy and adverse reactions were noted in the study group in contrast to the control group. CONCLUSION: EOSP patients given with LMWH combined with magnesium sulfate and labetalol can effectively reduce the patient's blood pressure and urinary protein level; improve coagulation function, oxidative stress, and vascular endothelial function indices; reduce the adverse pregnancy outcomes; and improve the safety of treatment.
Asunto(s)
Coagulación Sanguínea , Endotelio Vascular , Heparina de Bajo-Peso-Molecular , Labetalol , Sulfato de Magnesio , Preeclampsia , Resultado del Embarazo , Humanos , Femenino , Embarazo , Preeclampsia/tratamiento farmacológico , Adulto , Heparina de Bajo-Peso-Molecular/uso terapéutico , Heparina de Bajo-Peso-Molecular/farmacología , Sulfato de Magnesio/farmacología , Sulfato de Magnesio/uso terapéutico , Coagulación Sanguínea/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Labetalol/uso terapéutico , Labetalol/farmacología , Presión Sanguínea/efectos de los fármacos , Quimioterapia Combinada , Estrés Oxidativo/efectos de los fármacosRESUMEN
OBJECTIVES: To explore the association between drinking water sources and cognitive functioning among older adults residing in rural China. METHODS: Data were extracted from the 2008-2018 Chinese Longitudinal Healthy Longevity Survey. Drinking water sources were categorized according to whether purification measures were employed. The Chinese version of the Mini-Mental State Examination was used for cognitive functioning assessment, and the score of <24 was considered as having cognitive dysfunction. Cox regression analyses were conducted to derive hazard ratios (HRs) and 95% confidence intervals (CIs) for the effects of various drinking water sources, changes in such sources, and its interaction with exercise on cognition dysfunction. RESULTS: We included 2304 respondents aged 79.67 ± 10.02 years; of them, 1084 (44.49%) were men. Our adjusted model revealed that respondents consistently drinking tap water were 21% less likely to experience cognitive dysfunction compared with those drinking untreated water (HR = 0.79, 95% CI: 0.70-0.90). Respondents transitioning from natural to tap water showed were 33% less likely to experience cognitive dysfunction (HR = 0.67, 95% CI: 0.58-0.78). Moreover, the HR (95% CI) for the interaction between drinking tap water and exercising was 0.86 (0.75-1.00) when compared with that between drinking untreated water and not exercising. All results adjusted for age, occupation, exercise, and body mass index. CONCLUSIONS: Prolonged tap water consumption and switching from untreated water to tap water were associated with a decreased risk of cognitive dysfunction in older individuals. Additionally, exercising and drinking tap water was synergistically associated with the low incidence of cognitive dysfunction. These findings demonstrate the importance of prioritizing drinking water health in rural areas, indicating that purified tap water can enhance cognitive function among older adults.
Asunto(s)
Disfunción Cognitiva , Agua Potable , Población Rural , Humanos , Masculino , Anciano , Femenino , China/epidemiología , Población Rural/estadística & datos numéricos , Anciano de 80 o más Años , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/etiología , Estudios Longitudinales , Ejercicio Físico , Cognición/fisiología , Modelos de Riesgos Proporcionales , Abastecimiento de AguaRESUMEN
As the brain ages, it almost invariably accumulates vascular pathology, which differentially affects the cerebral white matter. A rich body of research has investigated the link between vascular risk factors and the brain. One of the less studied questions is that among various modifiable vascular risk factors, which is the most debilitating one for white matter health? A white matter specific brain age was developed to evaluate the overall white matter health from diffusion weighted imaging, using a three-dimensional convolutional neural network deep learning model in both cross-sectional UK biobank participants (n = 37,327) and a longitudinal subset (n = 1409). White matter brain age gap (WMBAG) was the difference between the white matter age and the chronological age. Participants with one, two, and three or more vascular risk factors, compared to those without any, showed an elevated WMBAG of 0.54, 1.23, and 1.94 years, respectively. Diabetes was most strongly associated with an increased WMBAG (1.39 years, p < 0.001) among all risk factors followed by hypertension (0.87 years, p < 0.001) and smoking (0.69 years, p < 0.001). Baseline WMBAG was associated significantly with processing speed, executive and global cognition. Significant associations of diabetes and hypertension with poor processing speed and executive function were found to be mediated through the WMBAG. White matter specific brain age can be successfully targeted for the examination of the most relevant risk factors and cognition, and for tracking an individual's cerebrovascular ageing process. It also provides clinical basis for the better management of specific risk factors.
RESUMEN
Palmitoyl-protein thioesterase 1 (PPT1) is a lysosomal depalmitoylation enzyme that mediates protein posttranslational modifications. Loss-of-function mutation of PPT1 causes a failure of the lysosomal degradation of palmitoylated proteins and results in a congenital disease characterized by progressive neuronal degeneration referred to as infantile neuronal ceroid lipofuscinosis (INCL). A mouse knock-in model of PPT1 (PPT1-KI) was established by introducing the R151X mutation into exon 5 of the PPT1 gene, which exhibited INCL-like pathological lesions. We previously reported that hippocampal γ oscillations were impaired in PPT1 mice. Hippocampal γ oscillations can be enhanced by selective activation of the dopamine D4 receptor (DR4), a dopamine D2-like receptor. In this study, we investigated the changes in DR expression and the effects of dopamine and various DR agonists on neural network activity, cognition and motor function in PPT1KI mice. Cognition and motor defects were evaluated via Y-maze, novel object recognition and rotarod tests. Extracellular field potentials were elicited in hippocampal slices, and neuronal network oscillations in the gamma frequency band (γ oscillations) were induced by perfusion with kainic acid (200 nM). PPT1KI mice displayed progressive impairments in γ oscillations and hippocampus-related memory, as well as abnormal expression profiles of dopamine receptors with preserved expression of DR1 and 3, increased membrane expression of DR4 and decreased DR2 levels. The immunocytochemistry analysis revealed the colocalization of PPT1 with DR4 or DR2 in the soma and large dendrites of both WT and PPT1KI mice. Immunoprecipitation confirmed the interaction between PPT1 and DR4 or DR2. The impaired γ oscillations and cognitive functions were largely restored by the application of exogenous dopamine, the selective DR2 agonist quinpirole or the DR4 agonist A412997. Furthermore, the administration of A412997 (0.5 mg/kg, i.p.) significantly upregulated the activity of CaMKII in the hippocampus of 5-month-old PPT1KI mice. Collectively, these results suggest that the activation of D2-like dopamine receptors improves cognition and network activity in PPT1KI mice and that specific DR subunits may be potential targets for the intervention of neurodegenerative disorders, such as INCL.
RESUMEN
PURPOSE: The aim of this study is to rigorously assess the methodological quality of published clinical practice guidelines (CPGs) related to nutrition among colorectal cancer patients, to compile consensus recommendations, and to evaluate the quality of the included CPGs. METHODS: The systematic search covered eight electronic databases, two relevant professional association websites, and six guideline websites from their inception up to January 22, 2023. The methodological quality of the eligible guidelines was evaluated using the Appraisal of Guidelines Research and Evaluation II (AGREE II) instrument, and then, consensus recommendations were synthesized. The scores for each domain were expressed as the mean ± standard deviation (SD). Using the mean score as the benchmark for comparison, they were subsequently ranked from highest to lowest. The included guidelines were then categorized as having "high," "moderate," or "low" quality based on their scores. RESULTS: The literature search yielded ten guidelines. The findings indicated that the "Clarity of presentation" domain had the highest mean score (65.2 ± 7.7). This demonstrates how the guidelines effectively articulate recommendations. Additionally, the "Scope and purpose" domain achieved a mean score of 60.7 ± 10.9, followed by "Rigor of development" (51.7 ± 15.7), "Editorial independence" (51.1 ± 21), "Stakeholder involvement" (48 ± 16.8), and "Applicability" domains (47.5 ± 17.3). Two CPGs received an overall rating of "high quality" and were recommended; four CPGs received an overall rating of "moderate" and were recommended with modifications; and four CPGs received an overall rating of "low quality" and were not recommended. Furthermore, this study compiled twenty consensus recommendations related to nine distinct clinical issues. CONCLUSION: This study identified disparities in the methodological quality of the included CPGs, particularly in the "Applicability" domain, thus emphasizing the need for advancement in clinical feasibility and implementation. Notably, there is few guidelines specifically targeting colorectal cancer nutrition. These synthesized findings provided an intuitive, convenient, and comprehensive reference for evaluating nutrition among colorectal cancer patients. When applying these results, users should make careful decisions based on their specific situations.
Asunto(s)
Neoplasias Colorrectales , Guías de Práctica Clínica como Asunto , HumanosRESUMEN
Bacteriocins have the potential to effectively improve food-borne infections or gastrointestinal diseases and hold promise as viable alternatives to antibiotics. This study aimed to explore the antibacterial activity of three bacteriocins (nisin, enterocin Gr17, and plantaricin RX-8) and their ability to attenuate intestinal barrier dysfunction and inflammatory responses induced by Listeria monocytogenes, respectively. Bacteriocins have shown excellent antibacterial activity against L. monocytogenes without causing any cytotoxicity. Bacteriocins inhibited the adhesion and invasion of L. monocytogenes on Caco-2 cells, lactate dehydrogenase (LDH), trans-epithelial electrical resistance (TEER), and cell migration showed that bacteriocin improved the permeability of Caco-2 cells. These results were attributed to the promotion of tight junction proteins (TJP) assembly, specifically zonula occludens-1 (ZO-1), occludin, and claudin-1. Furthermore, bacteriocins could alleviate inflammation by inhibiting the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways and reducing the secretion of interleukin-6 (IL-6), interleukin-1 ß (IL-1ß) and tumor necrosis factor α (TNF-α). Among three bacteriocins, plantaricin RX-8 showed the best antibacterial activity against L. monocytogenes and the most pronounced protective effect on the intestinal barrier due to its unique structure. Based on our findings, we hypothesized that bacteriocins may inhibit the adhesion and invasion of L. monocytogenes by competing adhesion sites. Moreover, they may further enhance intestinal barrier function by inhibiting the expression of L. monocytogenes virulence factors, increasing the expression of TJP and decreasing the secretion of inflammatory factors. Therefore, bacteriocins will hopefully be an effective alternative to antibiotics, and this study provides valuable insights into food safety concerns. KEY POINTS: ⢠Bacteriocins show excellent antibacterial activity against L. monocytogenes ⢠Bacteriocins improve intestinal barrier damage and inflammatory response ⢠Plantaricin RX-8 has the best protective effect on Caco-2 cells damage.