Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Dairy Sci ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825110

RESUMEN

Bile acids are cholesterol-derived molecules that are primarily produced in the liver. In nonruminants with fatty liver, overproduction of bile acids is associated with liver injury. During the transition period, fatty liver is a metabolic disorder that can affect up to 50% of high-producing dairy cows. The purpose of this study was to provide a comprehensive evaluation on hepatic bile acid metabolism in dairy cows with fatty liver by assessing expression changes of genes involved in bile acid synthesis, export and uptake. The serum activities of aspartate aminotransferase, alanine aminotransferase and glutamate dehydrogenase and concentration of total bile acids were all greater, whereas serum concentration of total cholesterol was lower in cows with fatty liver than in healthy cows. Content of total bile acids was higher but total cholesterol was slightly lower in liver tissues from fatty liver cows than from healthy cows. The hepatic mRNA abundance of cholesterol 7a-hydroxylase (CYP7A1), hydroxy-delta-5-steroid dehydrogenase, 3 ß- and steroid delta-isomerase 7 (HSD3B7) and sterol 12α-hydroxylase (CYP8B1), enzymes involved in the classic pathway of bile acid synthesis, was higher in fatty liver cows than in healthy cows. Compared with healthy cows, the hepatic mRNA abundance of alternative bile acid synthesis pathway-related genes sterol 27-hydroxylase (CYP27A1) and oxysterol 7α-hydroxylase (CYP7B1) did not differ in cows with fatty liver. The protein and mRNA abundance of bile acid transporter bile salt efflux pump (BSEP) were lower in the liver of dairy cow with fatty liver. Compared with healthy cows, the hepatic mRNA abundance of bile acid transporters solute carrier family 51 subunit α (SLC51A), ATP binding cassette subfamily C member 1 (ABCC1) and 3 (ABCC3) was greater in cows with fatty liver, whereas the solute carrier family 51 subunit ß (SLC51B) did not differ. The expression of genes involved in bile acid uptake, including solute carrier family 10 member 1 (NTCP), solute carrier organic anion transporter family member 1A2 (SLCO1A2) and 2B1 (SLCO2B1) was upregulated in dairy cows with fatty liver. Furthermore, the hepatic protein and mRNA abundance of bile acid metabolism regulators farnesoid X receptor (FXR) and small heterodimer partner (SHP) were lower in cows with fatty liver than in healthy cows. Overall, these data suggest that inhibition of FXR signaling pathway may lead to the increased bile acid synthesis and uptake and decreased secretion of bile acids from hepatocytes to the bile, which elevates hepatic bile acids content in dairy cows with fatty liver. As the hepatotoxicity of bile acids has been demonstrated on nonruminant hepatocytes, it is likely that the liver injury is induced by increased hepatic bile acids content in dairy cows with fatty liver.

2.
J Dairy Sci ; 107(1): 625-640, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37709032

RESUMEN

Excessive free fatty acid (FFA) oxidation and related metabolism are the major cause of oxidative stress and liver injury in dairy cows during the early postpartum period. In nonruminants, activation of transcription factor EB (TFEB) can improve cell damage and reduce the overproduction of mitochondrial reactive oxygen species. As a downstream target of TFEB, peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α, gene name PPARGC1A) is a critical regulator of oxidative metabolism. Nuciferine (Nuc), a major bioactive compound isolated from the lotus leaf, has been reported to possess hepatoprotective activity. Therefore, the objective of this study was to investigate whether Nuc could protect bovine hepatocytes from FFA-induced lipotoxicity and the underlying mechanisms. A mixture of FFA was diluted in RPMI-1640 basic medium containing 2% low fatty acid bovine serum albumin to treat hepatocytes. Bovine hepatocytes were isolated from newborn calves and treated with various concentrations of FFA mixture (0, 0.3, 0.6, or 1.2 mM) or Nuc (0, 25, 50, or 100 µM), as well as co-treated with 1.2 mM FFA and different concentrations of Nuc. For the experiments of gene silencing, bovine hepatocytes were transfected with small interfering RNA targeted against TFEB or PPARGC1A for 36 h followed by treatment with 1.2 mM FFA for 12 h in presence or absence of 100 µΜ Nuc. The results revealed that FFA treatment decreased protein abundance of nuclear TFEB, cytosolic TFEB, total (t)-TFEB, lysosome-associated membrane protein 1 (LAMP1) and PGC-1α and mRNA abundance of LAMP1, but increased phosphorylated (p)-TFEB. In addition, FFA treatment increased the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) and decreased the activities of catalase (CAT) and glutathione peroxidase (GSH-Px) in bovine hepatocytes. Moreover, FFA administration enhanced the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactose dehydrogenase (LDH) in the medium of FFA-treated hepatocytes, but reduced the content of urea. In FFA-treated bovine hepatocytes, Nuc administration increased TFEB nuclear localization and the protein abundance of t-TFEB, LAMP1, and PGC-1α and mRNA abundance of LAMP1, decreased the contents of MDA and H2O2 and the protein abundance of p-TFEB, and enhanced the activities of CAT and GSH-Px in a dose-dependent manner. Consistently, Nuc administration reduced the activities of ALT, AST, and LDH and increased the content of urea in the medium of FFA-treated hepatocytes. Importantly, knockdown of TFEB reduced the protein abundance of p-TFEB, t-TFEB, LAMP1, and PGC-1α and mRNA abundance of LAMP1, and impeded the beneficial effects of Nuc on FFA-induced oxidative damage in bovine hepatocytes. In addition, PPARGC1A silencing did not alter Nuc-induced nuclear translocation of TFEB, increase of the protein abundance of t-TFEB, LAMP1, and PGC-1α and mRNA abundance of LAMP1, or decrease of the protein abundance of p-TFEB, whereas it partially reduced the beneficial effects of Nuc on FFA-caused oxidative injury. Taken together, Nuc exerts protective effects against FFA-induced oxidative damage in bovine hepatocytes through activation of the TFEB/PGC-1α signaling pathway.


Asunto(s)
Aporfinas , Ácidos Grasos no Esterificados , PPAR gamma , Femenino , Bovinos , Animales , Ácidos Grasos no Esterificados/farmacología , PPAR gamma/metabolismo , Peróxido de Hidrógeno , Hepatocitos/metabolismo , Estrés Oxidativo , Factores de Transcripción/genética , Glutatión Peroxidasa/metabolismo , ARN Mensajero/metabolismo , Urea
3.
J Dairy Sci ; 107(5): 3269-3279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37977448

RESUMEN

The aim of the present study was to investigate the activity of AMPK and mTORC1 as well as TFEB transcriptional activity and autophagy-lysosomal function in the liver of dairy cows with mild fatty liver (FL) and cows with moderate FL. Liver and blood samples were collected from healthy dairy cows (n = 10; hepatic triglyceride content <1% wet weight) and cows with mild FL (n = 10; 1% ≤ hepatic triglyceride content < 5% wet weight) or moderate FL (n = 10; 5% ≤ hepatic triglyceride content < 10% wet weight) that had a similar number of lactations (median = 3, range = 2-4) and days in milk (median = 6 d, range = 3-9). Blood parameters were determined using a Hitachi 3130 autoanalyzer with commercially available kits. Protein and mRNA abundances were determined using western blotting and quantitative real-time PCR, respectively. Activities of calcineurin and ß-N-acetylglucosaminidase were measured with commercial assay kits. Data were analyzed using one-way ANOVA with subsequent Bonferroni correction. Blood concentrations of glucose were lower in moderate FL cows (3.03 ± 0.21 mM) than in healthy (3.71 ± 0.14 mM) and mild FL cows (3.76 ± 0.14 mM). Blood concentrations of ß-hydroxybutyrate (BHB, 1.37 ± 0.15 mM in mild FL, 1.88 ± 0.17 mM in moderate FL) and free fatty acids (FFA, 0.69 ± 0.05 mM in mild FL, 0.96 ± 0.09 mM in moderate FL) were greater in FL cows than in healthy cows (BHB, 0.76 ± 0.12 mM; FFA, 0.42 ± 0.04 mM). Compared with healthy cows, phosphorylation of AMPK was greater and phosphorylation of its downstream target acetyl-CoA carboxylase 1 was lower in cows with mild and moderate FL. Phosphorylation of mTOR was lower in cows with mild FL compared with healthy cows. In cows with moderate FL, phosphorylation of mTOR and its downstream effectors was greater than in healthy cows and cows with mild FL. The mRNA abundance of TFEB was downregulated in cows with moderate FL compared with healthy cows and mild FL cows. In mild FL cows, the mRNA and protein abundances of TFEB were greater than in healthy cows. Compared with healthy cows, the mRNA abundances of autophagy markers sequestosome-1 and microtubule-associated protein 1 light chain 3-II, and the protein and mRNA abundances of lysosome-associated membrane protein 1 and cathepsin D were increased in mild FL cows but decreased in moderate FL cows. Compared with healthy cows, the mRNA abundance of mucolipin 1 and activities of ß-N-acetylglucosaminidase and calcineurin were higher in cows with mild FL but lower in cows with moderate FL. These data demonstrate that hepatic AMPK signaling pathway, TFEB transcriptional activity, and autophagy-lysosomal function are increased in dairy cows with mild FL; the hepatic mTORC1 signaling pathway is inhibited in mild FL cows but activated in moderate FL cows; and activities of AMPK and TFEB as well as autophagy-lysosomal function are impaired in moderate FL cows.

4.
J Dairy Sci ; 107(5): 3127-3139, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37939835

RESUMEN

During the perinatal period, dairy cows undergo negative energy balance, resulting in elevated circulating levels of nonesterified fatty acids (NEFA). Although increased blood NEFA concentrations are a physiological adaptation of early lactation, excessive NEFA in dairy cows is a major cause of fatty liver. Aberrant lipid metabolism leads to hepatic lipid accumulation and subsequently the development of fatty liver. Both inositol-requiring enzyme 1α (IRE1α) and c-Jun N-terminal kinase (JNK) have been validated for their association with hepatic lipid accumulation, including their regulatory functions in calf hepatocyte insulin resistance, oxidative stress, and apoptosis. Meanwhile, both IRE1α and JNK are involved in lipid metabolism in nonruminants. Therefore, the aim of this study was to investigate how IRE1α and JNK regulate lipid metabolism in bovine hepatocytes. An experiment was conducted on randomly selected 10 healthy cows (hepatic triglyceride [TG] content <1%) and 10 cows with fatty liver (hepatic TG content >5%). Liver tissue and blood samples were collected from experimental cows. Serum concentrations of NEFA and ß-hydroxybutyrate (BHB) were greater, whereas serum concentrations of glucose and milk production were lower in cows with fatty liver. The western blot results revealed that dairy cows with fatty liver had higher phosphorylation levels of JNK, c-Jun, and IRE1α in the liver tissue. Three in vitro experiments were conducted using primary calf hepatocytes isolated from 5 healthy calves (body weight: 30-40 kg; 1 d old). First, hepatocytes were treated with NEFA (1.2 mM) for 0.5, 1, 2, 3, 5, 7, 9, or 12 h, which showed that the phosphorylated levels of JNK, c-Jun, and IRE1α increased in both linear and quadratic effects. In the second experiment, hepatocytes were treated with high concentrations of NEFA (1.2 mM) for 12 h with or without SP600125, a canonical inhibitor of JNK. Western blot results showed that SP600125 treatment could decrease the expression of lipogenesis-associated proteins (PPARγ and SREBP-1c) and increase the expression of fatty acid oxidation (FAO)-associated proteins (CPT1A and PPARα) in NEFA-treated hepatocytes. The perturbed expression of lipogenesis-associated genes (FASN, ACACA, and CD36) and FAO-associated gene ACOX1 were also recovered by JNK inhibition, indicating that JNK reduced excessive NEFA-induced lipogenesis and FAO dysregulation in calf hepatocytes. Third, short hairpin RNA targeting IRE1α (sh-IRE1α) was transfected into calf hepatocytes to silence IRE1α, and KIRA6 was used to inhibit the kinase activity of IRE1α. The blockage of IRE1α could at least partially suppressed NEFA-induced JNK activation. Moreover, the blockage of IRE1α downregulated the expression of lipogenesis genes and upregulated the expression of FAO genes in NEFA-treated hepatocytes. In conclusion, these findings indicate that targeting the IRE1α-JNK axis can reduce NEFA-induced lipid accumulation in bovine hepatocytes by modulating lipogenesis and FAO. This may offer a prospective therapeutic target for fatty liver in dairy cows.

5.
J Dairy Sci ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876225

RESUMEN

Mitochondrial dysfunction has been reported to occur in the mammary gland of dairy cows suffering from ketosis. Prohibitin 2 (PHB2) plays a crucial role in regulating mitophagy, which clears impaired mitochondria to maintain normal mitochondrial function. Therefore, the current study aimed to investigate how PHB2 mediates mitophagy, thereby influencing mitochondrial function in the bovine mammary epithelial cell MAC-T. First, mammary gland tissue and blood samples were collected from healthy cows (control; n = 15, BHB <0.6 mM) and cows with clinical ketosis (CK; n = 15, BHB >3.0 mM). Compared with the control group, the CK group exhibited lower dry matter intake (DMI), milk production, milk protein, milk lactose, and serum glucose. In contrast, milk fat, serum nonesterified fatty acids (NEFA) and BHB were greater in CK group. The protein abundance of PHB2, peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α), mitofusin 2 (MFN2) in whole cell lysates (WCL), as well as PHB2, sequestosome-1 (SQSTM1, also called p62), microtubule-associated protein 1 light chain 3-II (LC3-II), and ubiquitinated proteins in mitochondrial fraction were significantly lower in the CK group. ATP content of mammary gland tissue in CK group was lower than that of healthy cows. Second, MAC-T were cultured and treated with NEFA (0, 0.3, 0.6, 1.2 mM). MAC-T treated with 1.2 mM NEFA displayed decreased protein abundance of PHB2, PGC-1α, MFN2 in WCL, as well as protein abundance of PHB2, p62, LC3-II, and ubiquitinated proteins in mitochondrial fraction. The content of ATP and JC-1 aggregates in 1.2 mM NEFA group were lower than in the 0 mM NEFA group. Additionally, 1.2 mM NEFA disrupted the fusion between mitochondria and lysosomes. MAC-T were then pretreated with 100 nM rapamycin, followed by treatment with or without NEFA. Rapamycin alleviated impaired mitophagy and mitochondria dysfunction induced by 1.2 mM NEFA. Third, MAC-T were transfected with small interfering RNA to silence PHB2 or a plasmid for overexpression of PHB2, followed by treatment with or without NEFA. The silencing of PHB2 aggravated 1.2 mM NEFA induced impaired mitophagy and mitochondrial dysfunction, whereas the overexpression of PHB2 alleviated these effects. Overall, this study provides evidence that PHB2, in regulation of mitophagy, is a mechanism for bovine mammary epithelial cells to counteract NEFA-induced mitochondrial dysfunction.

6.
J Dairy Sci ; 107(6): 4045-4055, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38246558

RESUMEN

During the periparturient period, both oxidative stress, and inflammation of adipose tissue are considered high risk factors for metabolic disorder of dairy cows. Oxidative stress can activate transcription factor nuclear factor kappa B (NF-κB), which lead to the upregulation of genes involved in inflammatory pathways. Thioredoxin-2 (TXN2) is a mitochondrial protein that regulates cellular redox by suppressing mitochondrial reactive oxygen species (ROS) generation in nonruminant, whereas the function of TXN2 in bovine adipocytes was unclear. Thus, the objective of this study was to evaluate how or by which mechanisms TXN2 regulates oxidative stress and NF-κB signaling pathway in bovine adipocytes. Bovine pre-adipocytes isolated from 5 healthy Holstein cows were differentiated and used for (1) treatment with different concentrations of hydrogen peroxide (H2O2; 0, 25, 50, 100, 200, or 400 µM) for 2 h; (2) transfection with or without TXN2 small interfering RNA (si-TXN2) for 48 h and then treated with or without 200 µM H2O2 for 2 h; (3) transfection with scrambled negative control siRNA (si-control) or si-TXN2 for 48 h, and then treatment with or without 10 mM N-acetylcysteine (NAC) for 2 h; (4) transfection with or without TXN2-overexpressing plasmid for 48 h and then treatment with or without 200 µM H2O2 for 2 h. High concentrations of H2O2 (200 and 400 µM) decreased protein and mRNA abundance of TXN2, reduced total antioxidant capacity (T-AOC) and ATP content in adipocytes. Moreover, 200 and 400 µM H2O2 reduced protein abundance of inhibitor of kappa B α (IκBα), increased phosphorylation of NF-κB and upregulated mRNA abundance of tumor necrosis factor-α (TNFA) and interleukin-1B (IL-1B), suggesting that H2O2-induced oxidative stress and activated NF-κB signaling pathway. Silencing of TXN2 increased intracellular ROS content, phosphorylation of NF-κB and mRNA abundance of TNFA and IL-1B, decreased ATP content and protein abundance of IκBα in bovine adipocytes. Knockdown of TXN2 aggravated H2O2-induced oxidative stress and inflammation. In addition, treatment with antioxidant NAC ameliorated oxidative stress and inhibited NF-κB signaling pathway in adipocytes transfected with si-TXN2. In bovine adipocytes treated with H2O2, overexpression of TXN2 reduced the content of ROS and elevated the content of ATP and T-AOC. Overexpression of TXN2 alleviated H2O2-induced inflammatory response in adipocytes, as demonstrated by decreased expression of phosphorylated NF-κB, TNFA, IL-1B, as well as increased expression of IκBα. Furthermore, the protein and mRNA abundance of TXN2 was lower in adipose tissue of dairy cows with clinical ketosis. Overall, our studies contribute to the understanding of the role of TXN2 in adipocyte oxidative stress and inflammatory response.


Asunto(s)
Adipocitos , Peróxido de Hidrógeno , FN-kappa B , Estrés Oxidativo , Transducción de Señal , Tiorredoxinas , Animales , Bovinos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Femenino
7.
J Dairy Sci ; 106(12): 9186-9199, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641277

RESUMEN

When ketosis occurs, supraphysiological concentrations of nonesterified fatty acids (NEFA) display lipotoxicity and are closely related to the occurrence of hepatic lipid accumulation, oxidative stress, and inflammation, resulting in hepatic damage and exacerbating the progression of ketosis. However, the mechanism of these lipotoxic effects caused by high concentrations of NEFA in ketosis is still unclear. Cluster antigen 36 (CD36), a fatty acid transporter, plays a vital role in the development of hepatic pathological injury in nonruminants. Thus, the aim of this study was to investigate whether CD36 plays a role in NEFA-induced hepatic lipotoxicity in dairy cows with clinical ketosis. Liver tissue and blood samples were collected from healthy (n = 10) and clinically ketotic (n = 10) cows at 3 to 15 d in milk. In addition, hepatocytes isolated from healthy calves were treated with 0, 0.6, 1.2, or 2.4 mM NEFA for 12 h; or infected with CD36 expressing adenovirus or CD36 silencing small interfering RNA for 48 h and then treated with 1.2 mM NEFA for 12 h. Compared with healthy cows, clinically ketotic cows had greater concentrations of serum NEFA and ß-hydroxybutyrate and activities of aspartate aminotransferase and alanine aminotransferase but lower serum glucose. In addition, dairy cows with clinical ketosis displayed excessive hepatic lipid accumulation. More importantly, these alterations were accompanied by an increased abundance of hepatic CD36. In the cell culture model, exogenous NEFA (0, 0.6, 1.2, or 2.4 mM) treatment could dose-dependently increase the abundance of CD36. Meanwhile, NEFA (1.2 mM) increased the content of triacylglycerol, reactive oxygen species and malondialdehyde, and decreased the activities of glutathione peroxidase and superoxide dismutase. Moreover, NEFA upregulated phosphorylation levels of nuclear factor κB (NF-κB) and the inhibitor of NF-κB (IκB) α, along with the upregulation of protein abundance of NLR family pyrin domain containing 3 (NLRP3) and caspase-1, and mRNA abundance of IL1B, IL6, and tumor necrosis factor α (TNFA). These alterations induced by NEFA in bovine hepatocytes were associated with increased lipid accumulation, oxidative stress and inflammation, which could be further aggravated by CD36 overexpression. Conversely, silencing CD36 attenuated these NEFA-induced detriments. Overall, these data suggest that CD36 may be a potential therapeutic target for NEFA-induced hepatic lipid accumulation, oxidative stress, and inflammation in dairy cows.


Asunto(s)
Enfermedades de los Bovinos , Cetosis , Femenino , Bovinos , Animales , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados , FN-kappa B/metabolismo , Hepatocitos/metabolismo , Inflamación/veterinaria , Inflamación/metabolismo , Estrés Oxidativo , Cetosis/veterinaria , Ácido 3-Hidroxibutírico , Enfermedades de los Bovinos/metabolismo
8.
J Dairy Sci ; 106(10): 7266-7280, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37730176

RESUMEN

Ketosis is often accompanied by a reduction in milk production in dairy cows, but the molecular mechanism has not been fully elucidated. Ketotic cows possess systemic oxidative stress (OS), which may implicate apoptosis in mammary glands. Sirtuin 3 (SIRT3) is a vital regulator of cellular redox homeostasis and is under the control of AMP-activated protein kinase (AMPK) signaling in nonruminants. Thus, we aimed to investigate (1) the AMPK-SIRT3 and apoptosis status of mammary glands from ketotic cows, (2) the effect of SIRT3 on OS-induced apoptosis in bovine mammary epithelial cells (BMEC), and (3) the role of AMPK signaling on SIRT3-mediated effects on apoptosis. Mammary gland samples were reused from a previous study, which contained healthy and ketotic cows (both n = 15). BMEC were incubated with 0, 0.3, 0.6, or 0.9 mM H2O2 for 6 h with/without a 30 min incubation of an antioxidant MitoQ (1 µM). Then BMEC were incubated with SIRT3 overexpression adenovirus (Ad-SIRT3) for 6 h followed by a 6 h incubation with 0.6 mM H2O2. Finally, BMEC were treated with the AMPK inhibitor Compound C (Cd C,10 µM) for 30 min before the H2O2 challenge, or cells were initially treated with the AMPK agonist MK8722 (10 µM) for 30 min followed by a 30-h culture with/without si-SIRT3 and eventually the H2O2 exposure. Ketotic cows displayed higher levels of Bax, Caspase-3 and Bax/Bcl-2 but lower levels of Bcl-2 in mammary glands. H2O2 incubation displayed similar results, exhibiting a dose-dependent manner between the H2O2 concentration and the apoptosis degree. Mito Q pretreatment reduced cellular reactive oxygen species and rescued cells from apoptosis. Ketotic cows had a lower mammary protein abundance of SIRT3. Similarly, H2O2 incubation downregulated both mRNA and protein levels of SIRT3 in a dose- and time-dependent manner. Ad-SIRT3 infection lowered levels of cellular reactive oxygen species, Bax, Caspase-3 and Bax/Bcl-2 but increased levels of Bcl-2. TUNEL assays confirmed that Ad-SIRT3 infection mitigated H2O2-induced apoptosis. Both ketotic cows and H2O2-induced BMEC had lower levels of p-AMPK and p-AMPK/AMPK. Additionally, Cd C pretreatment decreased SIRT3 and Bcl-2 expression but increased levels of Bax and Caspase-3. Contrary to the inhibitor, MK8722 had opposite effects and reduced the percentage of apoptotic cells. However, these effects of MK8722 were reversed upon SIRT3 silencing. In conclusion, in vivo data confirmed that ketosis is associated with greater apoptosis and restricted AMPK-SIRT3 signaling in mammary glands; in vitro data indicated that SIRT3 mitigates OS-induced apoptosis via AMPK signaling. As such, there may be potential benefits for targeting the AMPK-SIRT3 axis to help counteract the negative effects of mammary glands during ketosis.


Asunto(s)
Sirtuina 3 , Femenino , Bovinos , Animales , Caspasa 3 , Especies Reactivas de Oxígeno , Proteínas Quinasas Activadas por AMP , Cadmio , Peróxido de Hidrógeno , Proteína X Asociada a bcl-2 , Células Epiteliales , Apoptosis , Estrés Oxidativo
9.
J Dairy Sci ; 106(11): 8005-8016, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37641273

RESUMEN

Dairy cows have high incidence of ketosis during perinatal. According to our previous studies, elevated ketone bodies (mainly ß-hydroxybutyrate, BHB) in the peripheral blood are believed to contribute to the impairment of neutrophils mobility and directionality thereby contributing to the immunosuppression and further infectious disease secondary to ketosis. However, the specific effect of BHB on the directionality of bovine neutrophils needs further study and the underlying molecular mechanisms are still unclear. According to the concentration of serum BHB, 40 multiparous cows (within 3 wk postpartum) were selected and divided into the control (n = 20, BHB <0.6 mM) or clinical ketosis (n = 20, BHB >3.0 mM) group. Blood samples were collected for baseline serum characteristics analysis and neutrophil mobility and directionality detection. Platelet activation factor was used as a chemoattractant in cell migration experiments. Our ex-vivo data showed ketotic cows, compared with control cows, were in a negative energy balance state, and their neutrophils had shorter migration distance, lower migration speed, and impaired migration directionality. Neutrophils from control cows were incubated with 3.0 mM BHB for 6 h in vitro. Similarly, BHB stimulation resulted in impaired mobility and directionality of bovine neutrophils. We further specifically studied the underlying molecular mechanism of BHB regulating neutrophil migration directionality in the present study. Cell division control protein 42 homolog (Cdc42) and Ras-related C3 botulinum toxin substrate 1 (Rac1), 2 key markers in the regulation of migration directionality, were found increased after BHB treatment in their total and activated protein levels while decreasing in their transcription level, suggesting that an imbalance of the protein degradation system may be involved. Interestingly, transmission electron microscopy data revealed a decrease in autophagosome number in neutrophils from ketotic cows. Western blotting data showed the accumulation of sequestosome-1 (p62) protein and a decrease in microtubule-associated protein 1 light chain 3-II (LC3-II) protein abundance after BHB treatment, further confirming that the autophagy flux was inhibited in neutrophils from ketotic cows. Additionally, rapamycin (RAPA), a specific autophagy activator, was used with or without BHB treatment in vitro. Accordingly, the BHB-induced impairment of migration directionality but not mobility was relieved by RAPA. Furthermore, as verified by in vivo experiments, compared with the control cows, the protein abundance of total and activated Cdc42 and Rac1 increased and their mRNA abundance decreased in neutrophils from ketotic cows. Overall, the present study revealed that pathological concentration of BHB impairs neutrophil migration directionality through inhibiting the autophagy-mediated degradation of Cdc42 and Rac1. These findings help explain the immunosuppression caused by ketosis.

10.
J Dairy Sci ; 106(8): 5763-5774, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37268562

RESUMEN

During the transition period in dairy cows, high circulating concentrations of nonesterified fatty acids (NEFA) increase hepatic lipid deposits and are considered a major pathological factor for liver damage. We investigated whether AdipoRon, a synthetic small-molecule agonist of adiponectin receptors 1 and 2 shown to prevent liver lipid accumulation in nonruminants, could alleviate NEFA-induced lipid accumulation and mitochondrial dysfunction. Bovine hepatocytes were isolated from 5 healthy Holstein female newborn calves (1 d of age, 30-40 kg, fasting), and independently isolated hepatocytes from at least 3 different calves were used for each subsequent experiment. The composition and concentration of NEFA used in this study were selected according to hematological criteria of dairy cows with fatty liver or ketosis. First, hepatocytes were cultured with various concentrations of NEFA (0, 0.6, 1.2, or 2.4 mM) for 12 h. In a second experiment, hepatocytes were treated with AdipoRon at different concentrations (0, 5, 25, or 50 µM for 12 h) and times (25 µM for 0, 6, 12, or 24 h) with or without NEFA (1.2 mM) treatment. In the last experiment, hepatocytes were treated with AdipoRon (25 µM), NEFA (1.2 mM), or both for 12 h after treatment with or without the autophagy inhibitor chloroquine. Hepatocytes treated with NEFA had increased protein abundance of sterol regulatory element-binding protein 1c (SREBP-1c) and mRNA abundance of acetyl-CoA carboxylase 1 (ACACA), and decreased protein abundance of peroxisome proliferator-activated receptor α (PPARA), proliferator-activated receptor gamma coactivator-1 α (PGC-1α), mitofusin 2 (MFN2), cytochrome c oxidase subunit IV (COX IV), and mRNA abundance of carnitine palmitoyltransferase 1A (CPT1A), along with lower ATP concentrations. AdipoRon treatment reversed these effects, suggesting this compound had a positive effect on lipid metabolism and mitochondrial dysfunction during the NEFA challenge. In addition, upregulated expression of microtubule-associated protein 1 light chain 3-II (LC3-II, encoded by MAP1LC3) and downregulated expression of sequestosome-1 (SQSTM1, also called p62) indicated that AdipoRon enhanced autophagic activity in hepatocytes. The fact that chloroquine impeded the beneficial effects of AdipoRon on lipid accumulation and mitochondrial dysfunction suggested a direct role for autophagy during NEFA challenge. Our results suggest that autophagy is an important cellular mechanism to prevent NEFA-induced lipid accumulation and mitochondrial dysfunction in bovine hepatocytes, which is consistent with other studies. Overall, AdipoRon may represent a promising therapeutic agent to maintain hepatic lipid homeostasis and mitochondrial function in dairy cows during the transition period.


Asunto(s)
Enfermedades de los Bovinos , Hígado Graso , Bovinos , Animales , Femenino , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado Graso/veterinaria , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Autofagia , ARN Mensajero/metabolismo , Enfermedades de los Bovinos/metabolismo
11.
J Dairy Sci ; 106(7): 5182-5195, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37268580

RESUMEN

Adiponectin (encoded by ADIPOQ) is an adipokine that orchestrates energy homeostasis by modulating glucose and fatty acid metabolism in peripheral tissues. During the periparturient period, dairy cows often develop adipose tissue inflammation and decreased plasma adiponectin levels. Proinflammatory cytokine tumor necrosis factor-α (TNF-α) plays a pivotal role in regulating the endocrine functions of adipocytes, but whether it affects adiponectin production in calf adipocytes remains obscure. Thus, the present study aimed to determine whether TNF-α could affect adiponectin production in calf adipocytes and to identify the underlying mechanism. Adipocytes isolated from Holstein calves were differentiated and used for (1) BODIPY493/503 staining; (2) treatment with 0.1 ng/mL TNF-α for different times (0, 8, 16, 24, or 48 h); (3) transfection with peroxisome proliferator-activated receptor-γ (PPARG) small interfering RNA for 48 h followed by treatment with or without 0.1 ng/mL TNF-α for 24 h; and (4) overexpression of PPARG for 48 h followed by treatment with or without 0.1 ng/mL TNF-α for 24 h. After differentiation, obvious lipid droplets and secretion of adiponectin were observed in adipocytes. Treatment with TNF-α did not alter mRNA abundance of ADIPOQ but reduced the total and high molecular weight (HMW) adiponectin content in the supernatant of adipocytes. Quantification of mRNA abundance of endoplasmic reticulum (ER)/Golgi resident chaperones involved in adiponectin assembly revealed that ER protein 44 (ERP44), ER oxidoreductase 1α (ERO1A), and disulfide bond-forming oxidoreductase A-like protein (GSTK1) were downregulated in TNF-α-treated adipocytes, while 78-kDa glucose-regulated protein and Golgi-localizing γ-adaptin ear homology domain ARF binding protein-1 were unaltered. Moreover, TNF-α diminished nuclear translocation of PPARγ and downregulated mRNA abundance of PPARG and its downstream target gene fatty acid synthase, suggesting that TNF-α suppressed the transcriptional activity of PPARγ. In the absence of TNF-α, overexpression of PPARG enhanced the total and HMW adiponectin content in supernatant and upregulated the mRNA abundance of ADIPOQ, ERP44, ERO1A, and GSTK1 in adipocytes. However, knockdown of PPARG reduced the total and HMW adiponectin content in supernatant and downregulated the mRNA abundance of ADIPOQ, ERP44, ERO1A, and GSTK1 in adipocytes. In the presence of TNF-α, overexpression of PPARG decreased, while knockdown of PPARG further exacerbated TNF-α-induced reductions in total and HMW adiponectin secretion and gene expression of ERP44, ERO1A, and GSTK1. Overall, TNF-α reduces adiponectin assembly in the calf adipocyte, which may be partly mediated by attenuation of PPARγ transcriptional activity. Thus, locally elevated levels of TNF-α in adipose tissue may be one reason for the decrease in circulating adiponectin in periparturient dairy cows.


Asunto(s)
Adiponectina , PPAR gamma , Femenino , Animales , Bovinos , Adiponectina/metabolismo , PPAR gamma/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo
12.
J Dairy Sci ; 105(7): 6030-6040, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35637003

RESUMEN

When ketosis occurs, supraphysiological levels of free fatty acids (FFA) can cause oxidative injury to the mammary gland and autophagy can regulate the cellular oxidative status. The aim of this study was to investigate the autophagy status of mammary tissue and its associations with oxidative stress in healthy and clinically ketotic dairy cows. Mammary tissue and blood samples were collected from healthy cows [n = 15, ß-hydroxybutyrate (BHB) <0.6 mM] and clinically ketotic cows (n = 15, BHB >3.0 mM) at 3 to 15 (average = 7) days in milk. For in vitro study, bovine mammary epithelial cells (BMEC) isolated from healthy cows were treated with 0, 0.3, 0.6, or 1.2 mM FFA for 24 h. Furthermore, BMEC were pretreated with 100 nM rapamycin, an autophagy activator, for 4 h or 50 mM 3-methyladenine (3-MA), an autophagy inhibitor, for 1 h, followed by treatment with or without FFA (1.2 mM) for another 24 h. Oxidation indicators and autophagy-related protein abundance were measured. Compared with healthy cows, serum concentrations of FFA, BHB, and malondialdehyde were greater in clinically ketotic cows, but milk production (kg/d), milk protein (kg/d), activities of superoxide dismutase, catalase, and glutathione peroxidase were lower. Abundances of mRNA and protein of autophagy-related gene 5 (ATG5) and 7 (ATG7) were lower, but sequestosome-1 (SQSTM1, also called p62) greater in mammary tissue of clinically ketotic cows. The mRNA abundance of microtubule-associated protein 1 light chain 3 (MAP1LC3, also called LC3) and protein abundance of LC3-II were lower in mammary tissue of clinically ketotic cows. In vitro, exogenous FFA increased the content of malondialdehyde and reactive oxygen species, but decreased the activities of superoxide dismutase, catalase, and plasma glutathione peroxidase. Compared with the 0 mM FFA group, abundance of ATG5, ATG7, LC3-II was greater, but p62 was lower in the 0.6 mM FFA-treated cells. Similarly, abundance of ATG5, ATG7, and LC3-II was lower, but p62 greater in the 1.2 mM FFA-treated cells relative to 0 mM FFA group. Culture with rapamycin alleviated oxidative stress induced by 1.2 mM FFA, whereas 3-MA aggravated it. Overall, results indicated that a low concentration (0.6 mM) of FFA can induce oxidative stress and activate autophagy in BMEC. At higher concentrations of FFA (1.2 mM), autophagy is impaired and oxidative stress is aggravated. Autophagy is a mechanism for BMEC to counteract FFA-induced stress. As such, it could serve as a potential target for further development of novel strategies against oxidative stress.


Asunto(s)
Cetosis , Ácido 3-Hidroxibutírico , Animales , Autofagia/genética , Catalasa/metabolismo , Bovinos , Ácidos Grasos no Esterificados , Femenino , Glutatión Peroxidasa/metabolismo , Cetosis/veterinaria , Malondialdehído , Estrés Oxidativo , ARN Mensajero/metabolismo , Sirolimus , Superóxido Dismutasa/metabolismo
13.
J Dairy Sci ; 105(8): 6997-7010, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35688731

RESUMEN

Activated autophagy-lysosomal pathway (ALP) can degrade virtually all kinds of cellular components, including intracellular lipid droplets, especially during catabolic conditions. Sustained lipolysis and increased plasma fatty acids concentrations are characteristic of dairy cows with hyperketonemia. However, the status of ALP in adipose tissue during this physiological condition is not well known. The present study aimed to ascertain whether lipolysis is associated with activation of ALP in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes. In vivo, blood and subcutaneous adipose tissue (SAT) biopsies were collected from nonhyperketonemic (nonHYK) cows [blood ß-hydroxybutyrate (BHB) concentration <1.2 mM, n = 10] and hyperketonemic (HYK) cows (blood BHB concentration 1.2-3.0 mM, n = 10) with similar days in milk (range: 3-9) and parity (range: 2-4). In vitro, calf adipocytes isolated from 5 healthy Holstein calves (1 d old, female, 30-40 kg) were differentiated and used for (1) treatment with lipolysis inducer isoproterenol (ISO, 10 µM, 3 h) or mammalian target of rapamycin inhibitor Torin1 (250 nM, 3 h), and (2) pretreatment with or without the ALP inhibitor leupeptin (10 µg/mL, 4 h) followed by ISO (10 µM, 3 h) treatment. Compared with nonHYK cows, serum concentration of free fatty acids was greater and serum glucose concentration, DMI, and milk yield were lower in HYK cows. In SAT of HYK cows, ratio of phosphorylated hormone-sensitive lipase to hormone-sensitive lipase, and protein abundance of adipose triacylglycerol lipase were greater, but protein abundance of perilipin 1 (PLIN1) and cell death-inducing DNA fragmentation factor-α-like effector c (CIDEC) was lower. In addition, mRNA abundance of autophagy-related 5 (ATG5), autophagy-related 7 (ATG7), and microtubule-associated protein 1 light chain 3 beta (MAP1LC3B), protein abundance of lysosome-associated membrane protein 1, and cathepsin D, and activity of ß-N-acetylglucosaminidase were greater, whereas protein abundance of sequestosome-1 (p62) was lower in SAT of HYK cows. In calf adipocytes, treatment with ISO or Torin1 decreased protein abundance of PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes, but increased glycerol content in the supernatant of calf adipocytes. Moreover, the mRNA abundance of ATG5, ATG7, and MAP1LC3B was upregulated, the protein abundance of lysosome-associated membrane protein 1, cathepsin D, and activity of ß-N-acetylglucosaminidase were increased, whereas the protein abundance of p62 was decreased in calf adipocytes treated with ISO or Torin1 compared with control group. Compared with treatment with ISO alone, the protein abundance of p62, PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes were higher, but the glycerol content in the supernatant of calf adipocytes was lower in ISO and leupeptin co-treated group. Overall, these data indicated that activated ALP is associated with increased lipolysis in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes.


Asunto(s)
Enfermedades de los Bovinos , Cetosis , Ácido 3-Hidroxibutírico , Acetilglucosaminidasa/metabolismo , Tejido Adiposo/metabolismo , Animales , Autofagia , Catepsina D/metabolismo , Bovinos , Enfermedades de los Bovinos/metabolismo , Femenino , Glicerol/metabolismo , Cetosis/veterinaria , Lactancia , Leupeptinas/metabolismo , Lipólisis , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Embarazo , ARN Mensajero/metabolismo , Esterol Esterasa/metabolismo , Triglicéridos/metabolismo
14.
J Dairy Sci ; 105(5): 4520-4533, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35248377

RESUMEN

Ketosis occurs most frequently in the peripartal period and is associated with liver injury and steatosis. Lysosomes serve as the terminal degradative station and contribute to liver homeostasis through their role in the digestion of dysfunctional organelles and lipid droplets. Transcription factor EB (TFEB) has been identified as a master regulator of lysosomal function. Thus, the objective of the present study was to investigate the status of lysosomal function and TFEB transcriptional activity and potential changes in abundance of upstream effectors of TFEB identified in nonruminants, including mechanistic target of rapamycin kinase complex 1 (mTORC1), protein kinase B (Akt), glycogen synthase kinase ß (GSK3ß), and extracellular signal-regulated kinase1/2 (ERK1/2), and to explore which factor induces the above changes. Liver and blood samples were collected from healthy cows (n = 10) and ketotic cows (n = 10) that had a similar number of lactations (median = 3, range = 2-4) and days in milk (median = 6 d, range = 3-9 d). Calf hepatocytes were isolated from Holstein calves and treated with 10 ng/mL growth hormone (GH), 3.0 mM ß-hydroxybutyrate (BHB), 1.5 ng/mL interleukin-18 (IL-18), 0.15 ng/mL tumor necrosis factor-α (TNF-α), or 1.2 mM free fatty acid (FFA) for 12 h. Serum levels of FFA and activities of alanine aminotransferase and aspartate aminotransferase were greater in ketotic cows, whereas glucose was lower. Additionally, ketotic dairy cows exhibited higher serum concentrations of GH, IL-18, and TNF-α, and lower serum concentration of insulin. The lower protein abundance of lysosome-associated membrane protein 1 (LAMP1) and mRNA abundance of LAMP1 indicated that hepatic lysosomal mass was lower in ketotic cows. Furthermore, lower protein abundance of cathepsin D (CTSD) and mRNA abundance of CTSD and V0 domain of the vacuolar ATPase along with lower activity of ß-N-acetylglucosaminidase indicated impairment in hepatic lysosomal function due to ketosis. The lower nuclear abundance, total protein, and mRNA abundance of TFEB and peroxisome proliferator-activated receptor γ coactivator 1 α along with greater phosphorylated (p)-TFEB in the liver of ketotic cows indicated an impairment of hepatic TFEB transcriptional activity. The protein abundances of phosphorylated mTOR (p-mTOR) and its downstream effectors ribosomal protein S6 kinase B (RPS6KB) and eukaryotic factor 4E-binding protein 1 (EIF4EBP1) were greater, whereas p-Akt, p-GSK3ß, and p-ERK1/2 were lower in the liver of ketotic cows. Importantly, elevated phosphorylation of mTOR, RPS6KB, and EIF4EBP1 was observed in calf hepatocytes treated with GH, BHB, IL-18, TNF-α, and FFA. Moreover, BHB, TNF-α, and FFA, not GH and IL-18, reduced TFEB transcriptional activity and impaired lysosomal function in calf hepatocytes. Taken together, these data suggest that BHB, TNF-α, and FFA overactivate the hepatic mTORC1 signaling pathway during ketosis and further impaired TFEB transcriptional activity and lysosomal function, which may contribute to liver injury and steatosis.


Asunto(s)
Cetosis , Proteínas Proto-Oncogénicas c-akt , Ácido 3-Hidroxibutírico/metabolismo , Animales , Autofagia/genética , Bovinos , Ácidos Grasos no Esterificados/metabolismo , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Interleucina-18/metabolismo , Cetosis/metabolismo , Cetosis/veterinaria , Hígado/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Sirolimus/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
J Dairy Sci ; 105(9): 7829-7841, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35863923

RESUMEN

Mitochondria are the main site of fatty acid oxidation and reactive oxygen species (ROS) formation. Damaged or dysfunctional mitochondria induce oxidative stress and increase the risk of lipid accumulation. During the process of mitophagy, PTEN induced kinase 1 (PINK1) accumulates on damaged mitochondria and recruits cytoplasmic Parkin to mitochondria. As an autophagy receptor protein, sequestosome-1 (p62) binds Parkin-ubiquitinated outer mitochondrial membrane proteins and microtubule-associated protein 1 light chain 3 (LC3) to facilitate degradation of damaged mitochondria. In nonruminants, clearance of dysfunctional mitochondria through the PINK1/Parkin-mediated mitophagy pathway contributes to reducing ROS production and maintaining metabolic homeostasis. Whether PINK1/Parkin-mediated mitophagy plays a similar role in dairy cow liver is not well known. Thus, the objective of this study was to investigate mitophagy status in dairy cows with fatty liver and its role in free fatty acid (FFA)-induced oxidative stress and lipid accumulation. Liver and blood samples were collected from healthy dairy cows (n = 10) and cows with fatty liver (n = 10) that had a similar number of lactations (median = 3, range = 2 to 4) and days in milk (median = 6 d, range = 3 to 9 d). Calf hepatocytes were isolated from 5 healthy newborn female Holstein calves (1 d of age, 30-40 kg). Hepatocytes were transfected with small interfering RNA targeted against PRKN for 48 h or transfected with PRKN overexpression plasmid for 36 h, followed by treatment with FFA (0.3 or 1.2 mM) for 12 h. Mitochondria were isolated from fresh liver tissue or calf hepatocytes. Serum concentrations of ß-hydroxybutyrate were higher in dairy cows with fatty liver. Hepatic malondialdehyde (MDA) and hydrogen peroxide (H2O2) were greater in cows with fatty liver. The lower protein abundance of PINK1, Parkin, p62, and LC3-II in hepatic mitochondrial fraction of dairy cows with fatty liver indicated the mitophagy was impaired. In hepatocytes, knockdown of PRKN decreased protein abundance of p62 and LC3-II in the mitochondrial fraction, and increased contents of triacylglycerol (TG), MDA, and H2O2. In addition, protein abundances of PINK1, Parkin, p62, and LC3-II were lower in the mitochondrial fraction from hepatocytes treated with 1.2 mM FFA than the hepatocytes treated with 0.3 mM FFA, whereas the content of TG, MDA, and H2O2 increased. In 1.2 mM FFA-treated hepatocytes, PRKN overexpression increased protein abundance of p62 and LC3-II in the mitochondrial fraction and decreased contents of TG, MDA, and H2O2. Together, our data demonstrate that low abundance of mitophagy markers is associated with ROS overproduction in dairy cows with fatty liver and impaired mitophagy induced by a high concentration of FFA promotes ROS production and lipid accumulation in female calf hepatocytes.


Asunto(s)
Enfermedades de los Bovinos , Hígado Graso , Animales , Bovinos , Enfermedades de los Bovinos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Hígado Graso/veterinaria , Femenino , Hepatocitos/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitofagia/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
J Dairy Sci ; 105(4): 3477-3489, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35151471

RESUMEN

Ketosis in dairy cows, a common metabolic disorder during the peripartal period, is accompanied by systemic inflammation and high concentrations of blood ß-hydroxybutyrate (BHB). Neutrophil apoptosis plays a key role in maintaining the balance of inflammation and functional capacity of circulating neutrophils in ketotic cows. The kinases ERK1/2 and AKT, as well as their downstream Bcl-2 family-mediated mitochondrial signaling, are important apoptosis-regulating pathways in neutrophils. The objective of our study was to investigate the effects of BHB on neutrophil apoptosis and the underlying regulatory mechanisms during ketosis. Neutrophils were isolated from 5 multiparous cows (within 3 wk postpartum) with serum BHB concentrations <0.6 mM and glucose concentrations >3.5 mM. In a series of experiments, neutrophils were treated with increasing concentrations of BHB (0, 0.6, 2, and 3 mM for 10 h) and time (0, 2, 4, 6, 8, and 10 h with 2 mM). Subsequently, a 2 mM BHB dose was used to challenge neutrophils for 8 h. Apoptosis rate of neutrophils and protein abundance of cleaved caspase 3 were lower after BHB treatment. Treatment with BHB decreased protein and mRNA abundance of the pro-apoptotic genes Bax (BAX) and Bad (BAD), whereas it increased mitochondrial membrane potential (MMP) and protein and mRNA of the anti-apoptotic genes Bcl-xL (BCL2L1) and Mcl-1 (MCL1). This indicated that a mitochondrial pathway was involved in the inhibition of neutrophil apoptosis via BHB. In addition, both SCH772984 (an inhibitor of the ERK1/2 signaling pathway) and MK-2206 (an inhibitor of the AKT signaling pathway) alleviated the BHB-induced anti-apoptotic function of the Bcl-2 family and the inhibition of MMP. Overall, our data demonstrated that high concentrations of BHB inhibit apoptosis in bovine neutrophils by activating the ERK1/2 and AKT signaling pathways. These findings provide a theoretical basis for the understanding of systemic inflammation in ketotic cows.


Asunto(s)
Enfermedades de los Bovinos , Cetosis , Ácido 3-Hidroxibutírico/farmacología , Animales , Apoptosis , Bovinos , Enfermedades de los Bovinos/metabolismo , Femenino , Cetosis/veterinaria , Lactancia , Sistema de Señalización de MAP Quinasas , Neutrófilos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
17.
J Dairy Sci ; 105(4): 3405-3415, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35123783

RESUMEN

Ketosis in dairy cows often occurs in the peripartal period and is accompanied by immune dysfunction. High concentrations of ß-hydroxybutyrate (BHB) in peripheral blood during ketosis inhibits the release of neutrophil extracellular traps (NET) and contributes to immune dysfunction. However, the mechanisms whereby BHB affects NET release remains unclear. In this study, 5 healthy peripartal dairy cows (within 3 wk postpartum) with serum BHB concentrations <0.6 mM and glucose concentrations >3.5 mM were used as blood donors. Blood samples were collected before feeding, and the isolated polymorphonuclear neutrophils were incubated with 3 mM BHB for different times. Inhibition of Cit-H3 (citrullinated histone 3) protein abundance, a marker of NET activation, in response to BHB was used to determine an optimal incubation time for in vitro experiments. Four hours was selected as the optimal duration of BHB treatment. Phorbol-12-myristate-13-acetate (PMA) was used to induce the release of NET in vitro. The BHB treatment with or without PMA treatment decreased protein abundance of Cit-H3 and PAD4 (arginine deiminase 4) and increased neutrophil elastase. Immunofluorescence and scanning electron microscope analyses revealed that BHB treatment inhibited PMA-induced NET release. The BHB treatment also decreased double strain DNA content in the supernatant, further confirming the inhibitory effect of BHB on NET release. Furthermore, BHB treatment decreased the level of intracellular reactive oxygen species (ROS), phosphorylation level of p47, and protein abundance of Rac2, suggesting that BHB-induced NET inhibition may have been caused by decreased NADPH oxidase-derived ROS. The phosphorylation level of phosphoinositide 3-kinase (PI3K), an important upstream regulator of NADPH oxidase, was attenuated by BHB treatment. To confirm the involvement of PI3K signaling pathway in BHB-induced NET inhibition, 740Y-P, a potent activator of PI3K signaling pathway, was used. Data indicated that 740Y-P relieved the inhibitory effects of BHB on ROS production and NADPH oxidase activation. Importantly, as revealed by immunofluorescence and scanning electron microscopy analyses, 740Y-P also dampened the inhibitory effect of BHB on NET release and the protein abundance of Cit-H3 and PAD4. Overall, the present study revealed that high concentration of BHB impairs NET release through inhibiting PI3K-mediated NADPH oxidase ROS production. These findings help partly explain the immune dysfunction in cows experiencing negative energy balance or ketosis in early lactation.


Asunto(s)
Enfermedades de los Bovinos , Trampas Extracelulares , Ácido 3-Hidroxibutírico/farmacología , Animales , Bovinos , Enfermedades de los Bovinos/metabolismo , Trampas Extracelulares/metabolismo , Femenino , NADP , NADPH Oxidasas , Neutrófilos , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Especies Reactivas de Oxígeno
18.
J Dairy Sci ; 105(2): 1731-1742, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34998548

RESUMEN

Lipolysis is increased in adipose tissue of cows with fatty liver during the transition period. Autophagy, a major cellular degradation process, plays a critical role in adipose tissue homeostasis. The objective of this study was to explore the relationship between lipolysis and autophagy in adipose tissue of cows with fatty liver. Using a nested case-control design, we compared blood and adipose tissue samples from 10 control cows [parity: median = 3, range = 2-4; days in milk: median = 8 d, range = 5-10 d; hepatic triacylglycerol content: median = 0.55% liver wt, range = 0.48-0.61% liver wt] and 10 lactation stage-matched cows with fatty liver (parity: median = 3, range = 2-4; days in milk: median = 9 d, range = 5-11 d; hepatic triacylglycerol content: median = 6.28% liver wt, range = 2.86-7.75% liver wt). Data were analyzed using paired t-tests. Serum concentrations of free fatty acids and ß-hydroxybutyrate were greater and glucose concentration was lower in cows with fatty liver, which we determined by using commercially-available kits. Furthermore, western blotting showed that increased protein abundance of ATGL (adipose triglyceride lipase), ATG5 (autophagy-related gene 5), and ATG7; ratio of phosphorylated (p)-HSL (hormone-sensitive lipase) to HSL and MAP1LC3 (microtubule-associated protein 1 light chain 3, also called LC3-II) to LC3-I along with decreased abundance of PLIN1 (perilipin 1), SQSTM1 (sequestosome-1, also called p62), and the ratio of p-mTOR (phosphorylated mechanistic target of rapamycin) to mTOR in cows with fatty liver. Quantitative reverse-transcription PCR revealed an increase in abundance of MAP1LC3 mRNA and a decrease in SQSTM1 mRNA in cows with fatty liver. These findings were replicated using an adipocyte model. Primary cultures of calf adipocytes isolated from the adipose tissue of the peritoneal omentum and mesentery were treated with 10 mM 3-methyladenine (3-MA), 5 nM rapamycin, 1 µM isoproterenol (ISO), and 1 µM ISO + 10 mM 3-MA. Comparisons among groups were analyzed using one-way ANOVA. Compared with the control, the 1 µM ISO treatment upregulated the abundance of ATGL, the ratio of p-HSL to HSL and LC3-II to LC3-I, and the glycerol content, whereas it downregulated the abundance of PLIN1 and p62 in calf adipocytes. Compared with the 1 µM ISO treatment group, 1 µM ISO + 10 mM 3-MA downregulated the abundance of ATGL, the ratio of p-HSL to HSL and LC3-II to LC3-I, and the glycerol content, whereas it upregulated the abundance of PLIN1 and p62. Compared with the control, the 5 nM rapamycin treatment upregulated the abundance of ATGL, the ratio of p-HSL to HSL and LC3-II to LC3-I, and the glycerol content, whereas it downregulated the abundance of PLIN1 and p62 in calf adipocytes. Overall, these data indicated that increased lipolysis in adipose tissue of cows with fatty liver was associated with enhanced autophagy. However, the specific molecular mechanisms that link lipolysis and autophagy need to be further investigated.


Asunto(s)
Enfermedades de los Bovinos , Hígado Graso , Tejido Adiposo/metabolismo , Animales , Autofagia , Bovinos , Enfermedades de los Bovinos/metabolismo , Hígado Graso/metabolismo , Hígado Graso/veterinaria , Femenino , Lactancia , Lipólisis , Embarazo , Esterol Esterasa/metabolismo
19.
J Dairy Sci ; 105(3): 2473-2486, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34998570

RESUMEN

Subclinical ketosis (SCK) in dairy cows, a common metabolic disorder during the peripartal period, is accompanied by systemic inflammation. Excessive release of azurophil granule (AG) contents during degranulation of polymorphonuclear neutrophils (PMN) could contribute to systemic inflammation in SCK cows. Although the increase in blood free fatty acids (FFA) in SCK cows may promote AG degranulation from PMN, the underlying mechanisms are unclear. Thirty multiparous cows (within 3 wk postpartum) with similar lactation numbers (median = 3, range = 2-4) and days in milk (median = 6, range = 3-15) were classified based on serum ß-hydroxybutyrate (BHB) level as control (n = 15, BHB < 0.6 mM) or SCK (n = 15, 1.2 mM < BHB < 3.0 mM). Cows with SCK had greater levels of serum haptoglobin, serum amyloid A, IL-1ß, IL-6, IL-8 and tumor necrosis factor-α. These proinflammatory factors had strong positive correlations with myeloperoxidase (MPO), a marker protein of PMN AG, whose content was greater in the serum of SCK cows. Both the number of AG and the protein abundance of MPO were lower in PMN isolated from SCK cows. Additionally, we found a greater ratio of blood CH138A+/CD63high cells and greater mean fluorescence intensity of CD63 on the PMN membrane, further confirming the greater degree of AG degranulation in cows with SCK. In vitro FFA dose response (0, 0.3, 0.6, 1.2, and 2.4 mM for 4 h) and time course (0, 0.5, 1, 2, and 4 h with 0.6 mM) experiments were performed on PMN isolated from control cows. The increase in MPO content in extracellular supernatant resulting from those experiments led to the selection of 0.6 mM FFA for 1 h duration as conditions for subsequent studies. After FFA treatment, release of intracellular MPO was increased along with increased levels of CD63 mean fluorescence intensity on the PMN membrane, confirming that FFA promoted degranulation of AG. In addition, FFA treatment increased reactive oxygen species (ROS) production by PMN, an effect that was attenuated by incubation with diphenyleneiodonium chloride (DPI), a NADPH oxidase-derived ROS inhibitor. The mitochondrial-derived ROS inhibitor carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) did not affect ROS in response to FFA treatment. Treatment with FFA increased p47 phosphorylation and mRNA abundance of NCF1, NCF2, and CYBB in PMN. Furthermore, DPI, but not FCCP, dampened the degranulation of PMN AG induced by FFA in vitro. These data suggested that the degranulation of AG in PMN induced by FFA was mediated by NADPH oxidase-derived ROS. As verified ex vivo, PMN from SCK cows had greater levels of ROS, phosphorylation of p47, and mRNA abundance of NCF1, NCF2, and CYBB. Overall, the present study revealed that high blood concentrations of FFA in SCK cows induce the production of NADPH oxidase-derived ROS, thereby promoting degranulation of AG in PMN. The stimulatory effect of FFA on the release of AG content during degranulation, especially MPO, provides a new insight into the systemic inflammation experienced by peripartal cows with SCK.


Asunto(s)
Enfermedades de los Bovinos , Cetosis , Ácido 3-Hidroxibutírico , Animales , Bovinos , Enfermedades de los Bovinos/metabolismo , Ácidos Grasos no Esterificados , Femenino , Cetosis/metabolismo , Cetosis/veterinaria , Lactancia , Leche/metabolismo , NADPH Oxidasas , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno
20.
J Dairy Sci ; 105(5): 4581-4592, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35181129

RESUMEN

Reduced feed intake during the transition period renders cows unable to meet their energy needs for maintenance and lactation, leading to a state of negative energy balance. Severe negative energy balance initiates fat mobilization and increases circulating levels of free fatty acids (FFA), which could induce hepatic mitochondrial dysfunction, oxidative stress, and apoptosis. Enhancing the hepatic supply of propionate (major gluconeogenic substrate) is a feasible preventive and therapeutic strategy to alleviate hepatic metabolic disorders during the transition period. Whether propionate supply affects pathways beyond gluconeogenesis during high FFA loads is not well known. Thus, the objective of this study was to investigate whether propionate supply could protect calf hepatocytes from FFA-induced mitochondrial dysfunction, oxidative stress, and apoptosis. Hepatocytes were isolated from 5 healthy calves (1 d old, female, 30-40 kg, fasting) and treated with various concentrations of propionate (0, 1, 2, and 4 mM propionate for 12 h) or for different times (2 mM propionate for 0, 3, 6, 12 and 24 h). Furthermore, hepatocytes were treated with propionate (2 mM), fatty acids (1.2 mM), or both for 12 h with or without 50 nM PGC-1α (peroxisome proliferator-activated receptor-gamma coactivator-1 alpha) small interfering RNA. Compared with the control group, protein abundance of PGC-1α was greater with 2 and 4 mM propionate treatment groups. Furthermore, protein abundance of TFAM (mitochondrial function marker mitochondrial transcription factor A) and VDAC1 (voltage-dependent anion channel 1) was greater with 1, 2, and 4 mM propionate, and COX4 (cyclooxygenase 4) was greater with 2 and 4 mM propionate groups. In addition, propionate supply led to an increase in protein abundance of PGC-1α, TFAM, VDAC1, and COX4 over time. Flow cytometry revealed that propionate treatment increased the number of mitochondria in hepatocytes compared with control group, but inhibition of PGC-1α abolished these beneficial effects. The lower protein abundance of PGC-1α, TFAM, COX4, and VDAC1 and activities of superoxide dismutase and glutathione peroxidase, along with greater production of reactive oxygen species, malondialdehyde, and apoptosis rate in response to treatment with high concentrations of FFA suggested an impairment of mitochondrial function and induction of oxidative stress and apoptosis. In contrast, propionate treatment hastened these negative effects. Knockdown of PGC-1α by small interfering RNA impeded the beneficial role of propionate on FFA-induced mitochondrial dysfunction, oxidative stress, and apoptosis. Overall, results demonstrated that propionate supply alleviates mitochondrial dysfunction, oxidative stress, and apoptosis in FFA-treated calf hepatocytes by upregulating PGC-1α. Together, the data suggest that PGC-1α may be a promising target for preventing or improving hepatic function during periods such as the transition into lactation where the FFA load on the liver increases.


Asunto(s)
Ácidos Grasos , Propionatos , Animales , Apoptosis , Bovinos , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Femenino , Hepatocitos/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , PPAR gamma/metabolismo , Propionatos/metabolismo , Propionatos/farmacología , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA