Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 957
Filtrar
Más filtros

Intervalo de año de publicación
1.
Pharmacol Rev ; 76(3): 414-453, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697854

RESUMEN

Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.


Asunto(s)
Antineoplásicos , Neoplasias , Proteínas Proto-Oncogénicas c-mdm2 , Humanos , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Terapia Molecular Dirigida
2.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38527807

RESUMEN

Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.


Asunto(s)
Encéfalo , Red Nerviosa , Humanos , Masculino , Femenino , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética , Atención/fisiología , Adulto Joven , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Memoria a Largo Plazo/fisiología , Mapeo Encefálico/métodos , Lóbulo Parietal/fisiología , Memoria a Corto Plazo/fisiología
3.
Nat Chem Biol ; 19(11): 1415-1422, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37653171

RESUMEN

Hydroxytryptophan serves as a chemical precursor to a variety of bioactive specialized metabolites, including the human neurotransmitter serotonin and the hormone melatonin. Although the human and animal routes to hydroxytryptophan have been known for decades, how bacteria catalyze tryptophan indole hydroxylation remains a mystery. Here we report a class of tryptophan hydroxylases that are involved in various bacterial metabolic pathways. These enzymes utilize a histidine-ligated heme cofactor and molecular oxygen or hydrogen peroxide to catalyze regioselective hydroxylation on the tryptophan indole moiety, which is mechanistically distinct from their animal counterparts from the nonheme iron enzyme family. Through genome mining, we also identify members that can hydroxylate the tryptophan indole ring at alternative positions. Our results not only reveal a conserved way to synthesize hydroxytryptophans in bacteria but also provide a valuable enzyme toolbox for biocatalysis. As proof of concept, we assemble a highly efficient pathway for melatonin in a bacterial host.


Asunto(s)
5-Hidroxitriptófano , Melatonina , Animales , Humanos , Triptófano/metabolismo , Hemo/química , Bacterias/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(32): e2119850119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35925886

RESUMEN

Cochlear hair cells (HCs) in the inner ear are responsible for sound detection. For HC fate specification, the master transcription factor Atoh1 is both necessary and sufficient. Atoh1 expression is dynamic and tightly regulated during development, but the cis-regulatory elements mediating this regulation remain unresolved. Unexpectedly, we found that deleting the only recognized Atoh1 enhancer, defined here as Eh1, failed to impair HC development. By using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we discovered two additional Atoh1 enhancers: Eh2 and Eh3. Notably, Eh2 deletion was sufficient for impairing HC development, and concurrent deletion of Eh1 and Eh2 or all three enhancers resulted in nearly complete absence of HCs. Lastly, we showed that Atoh1 binds to all three enhancers, consistent with its autoregulatory function. Our findings reveal that the cooperative action of three distinct enhancers underpins effective Atoh1 regulation during HC development, indicating potential therapeutic approaches for HC regeneration.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Oído Interno , Elementos de Facilitación Genéticos , Células Ciliadas Auditivas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Diferenciación Celular , Cóclea/citología , Oído Interno/citología , Células Ciliadas Auditivas/fisiología
5.
J Am Chem Soc ; 146(19): 13399-13405, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698691

RESUMEN

Structural motifs containing nitrogen-nitrogen (N-N) bonds are prevalent in a large number of clinical drugs and bioactive natural products. Hydrazine (N2H4) serves as a widely utilized building block for the preparation of these N-N-containing molecules in organic synthesis. Despite its common use in chemical processes, no enzyme has been identified to catalyze the incorporation of free hydrazine in natural product biosynthesis. Here, we report that a hydrazine transferase catalyzes the condensation of N2H4 and an aromatic polyketide pathway intermediate, leading to the formation of a rare N-aminolactam pharmacophore in the biosynthesis of broad-spectrum antibiotic albofungin. These results expand the current knowledge on the biosynthetic mechanism for natural products with N-N units and should facilitate future development of biocatalysts for the production of N-N-containing chemicals.


Asunto(s)
Hidrazinas , Hidrazinas/química , Hidrazinas/metabolismo , Antibacterianos/química , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Streptomyces/enzimología , Streptomyces/metabolismo , Lactamas/química , Lactamas/metabolismo , Farmacóforo
6.
Anal Chem ; 96(11): 4657-4664, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456390

RESUMEN

Polyvinyl alcohol (PVA) with abundant hydroxyl groups (-OH) has been widely used for membranes, hydrogels, and films, and its function is largely affected by the alcoholysis degree. Therefore, the development of rapid and accurate methods for alcoholysis degree determination in PVAs is important. In this contribution, we have proposed a novel fluorescence-based platform for probing the alcoholysis degree of PVA by using the (E)-N-(4-methoxyphenyl)-1-(quinolin-2-yl)methanimine (QPM)-Zn2+ complex as the reporter. The mechanism study disclosed that the strong coordination between -OH and Zn2+ induced the capture of the QPM-Zn2+ complex and promoted its subsequent immobilization into the noncrystalline area. The immobilization of the QPM-Zn2+ complex restricted its molecular rotation and reduced the nonirradiative transition, thus yielding bright emissions. In addition, the practical applications of this proposed method were further validated by the accurate alcoholysis degree determination of blind PVA samples with the confirmation of the National Standard protocol. It is expected that the developed fluorescence approach in this work might become an admissive strategy for screening the alcoholysis degree of PVA.

7.
Small ; 20(23): e2311599, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38214434

RESUMEN

Zero thermal coefficients of resistivity (ZTCR) materials exhibit minimal changes in resistance with temperature variations, making them essential in modern advanced technologies. The current ZTCR materials, which are based on the resistivity saturation effect of heavy metals, tend to function at elevated temperatures because the mean free path approaches the lower limit of the semiclassical Boltzmann theory when the temperature is sufficiently high. ZTCR materials working at low-temperatures are difficult to achieve due to electron-phonon scattering, which results in increased resistivity according to Bloch's theory. In this work, the ZTCR behavior at low-temperatures is realized in pre-microstrained Mn3NiN. The delicate balance between the resistivity contribution from electron-phonon scattering and spin-wave mediated weak localization is well revealed. A remarkable temperature coefficient of resistivity (TCR) value as low as 1.9 ppm K-1 (50 K ≤ T ≤ 200 K) is obtained, which is significantly superior to the threshold value of ZTCR behavior and the application standard of commercial ZTCR materials. The demonstration provides a unique paradigm in the design of ZTCR materials through the contraction effects of two opposite conductance mechanisms with positive and negative thermal coefficients of resistivity.

8.
Small ; : e2400267, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805747

RESUMEN

Developing synergistic targeted therapeutics to improve treatment efficacy while reducing side effects has proven promising for anticancer therapies, but how to conveniently modulate multidrug cooperation remains a challenge. Here, a novel synergistic strategy using a G-quadruplex-programmed versatile nanorobot (G4VN) containing two subunits of DNAzyme (DzG4) and ligand-drug conjugates (LDCs) is proposed to precisely target tumors and then execute both gene silencing and chemotherapy. As the core module of this nanorobot, a well-designed G4 responding to a high level of K+ in tumor microenvironment smartly kills three birds with one stone, which makes two TfR aptamers proximate to improve their efficiency of targeting tumor cells, and in situ activates a split 10-23 DNAzyme to downregulate target mRNA expression, meanwhile promotes the cell uptake of a GSH-responsive LDCs to enhance drug efficacy. Such a design enables a potently synergistic anticancer therapy with low side effects in vivo, showing great promise for broad applications in precision disease treatment.

9.
Small ; : e2402534, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850182

RESUMEN

In this study, the copper-nickel (Cu-Ni) bimetallic electrocatalysts for electrochemical CO2 reduction reaction(CO2RR) are fabricated by taking the finely designed poly(ionic liquids) (PIL) containing abundant Salen and imidazolium chelating sites as the surficial layer, wherein Cu-Ni, PIL-Cu and PIL-Ni interaction can be readily regulated by different synthetic scheme. As a proof of concept, Cu@Salen-PIL@Ni(NO3)2 and Cu@Salen-PIL(Ni) hybrids differ significantly in the types and distribution of Ni species and Cu species at the surface, thereby delivering distinct Cu-Ni cooperation fashion for the CO2RR. Remarkably, Cu@Salen-PIL@Ni(NO3)2 provides a C2+ faradaic efficiency (FEC2+) of 80.9% with partial current density (jC 2+) of 262.9 mA cm-2 at -0.80 V (versus reversible hydrogen electrode, RHE) in 1 m KOH in a flow cell, while Cu@Salen-PIL(Ni) delivers the optimal FEC2+ of 63.8% at jC2+ of 146.7 mA cm-2 at -0.78 V. Mechanistic studies indicates that the presence of Cu-Ni interfaces in Cu@Salen-PIL@Ni(NO3)2 accounts for the preserve of high-valence Cu(I) species under CO2RR conditions. It results in a high activity of both CO2-to-CO conversion and C-C coupling while inhibition of the competitive HER.

10.
Small ; : e2311129, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319033

RESUMEN

Constructing concentration differences between anions and cations at the ends of an ionic conductor is an effective strategy in electricity generation for powering wearable devices. Temperature gradient or salinity gradient is the driving force behind such devices. But their corresponding power generation devices are greatly limited in actual application due to their complex structure and harsh application conditions. In this study, a novel ionic concentration gradient electric generator based on the evaporation difference of the electrolyte is proposed. The device can be constructed without the need for semipermeable membranes, and operation does not need to build a temperature difference. As a demonstration, a PVA-Na ionic hydrogel is prepared as an electrolyte for the device and achieved a thermovoltage of more than 200 mV and an energy density of 77.94 J m-2 at 323 K. Besides, the device exhibits the capability to sustain a continuous voltage output for a duration exceeding 1500 min, as well as enabling charging and discharging cycles for 100 iterations. For practical applications, a module comprising 16 sub-cells is constructed and successfully utilized to directly power a light-emitting diode. Wearable devices and their corresponding cell modules are also developed to recycle body heat.

11.
J Med Virol ; 96(6): e29711, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847304

RESUMEN

The emerging evidence of human infections with emerging viruses suggests their potential public health importance. A novel taxon of viruses named Statoviruses (for stool-associated Tombus-like viruses) was recently identified in the gastrointestinal tracts of multiple mammals. Here we report the discovery of respiratory Statovirus-like viruses (provisionally named Restviruses) from the respiratory tracts of five patients experiencing acute respiratory disease with Human coronavirus OC43 infection through the retrospective analysis of meta-transcriptomic data. Restviruses shared 53.1%-98.8% identities of genomic sequences with each other and 39.9%-44.3% identities with Statoviruses. The phylogenetic analysis revealed that Restviruses together with a Stato-like virus from nasal-throat swabs of Vietnamese patients with acute respiratory disease, formed a well-supported clade distinct from the taxon of Statoviruses. However, the consistent genome characteristics of Restviruses and Statoviruses suggested that they might share similar evolutionary trajectories. These findings warrant further studies to elucidate the etiological and epidemiological significance of the emerging Restviruses.


Asunto(s)
Genoma Viral , Filogenia , Infecciones del Sistema Respiratorio , Humanos , China/epidemiología , Genoma Viral/genética , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/epidemiología , Masculino , Femenino , Estudios Retrospectivos , Sistema Respiratorio/virología , Preescolar , Adulto , Niño , ARN Viral/genética , Persona de Mediana Edad
12.
Cereb Cortex ; 33(8): 4305-4318, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36066439

RESUMEN

Auditory language comprehension recruits cortical regions that are both close to sensory-motor landmarks (supporting auditory and motor features) and far from these landmarks (supporting word meaning). We investigated whether the responsiveness of these regions in task-based functional MRI is related to individual differences in their physical distance to primary sensorimotor landmarks. Parcels in the auditory network, that were equally responsive across story and math tasks, showed stronger activation in individuals who had less distance between these parcels and transverse temporal sulcus, in line with the predictions of the "tethering hypothesis," which suggests that greater proximity to input regions might increase the fidelity of sensory processing. Conversely, language and default mode parcels, which were more active for the story task, showed positive correlations between individual differences in activation and sensory-motor distance from primary sensory-motor landmarks, consistent with the view that physical separation from sensory-motor inputs supports aspects of cognition that draw on semantic memory. These results demonstrate that distance from sensorimotor regions provides an organizing principle of functional differentiation within the cortex. The relationship between activation and geodesic distance to sensory-motor landmarks is in opposite directions for cortical regions that are proximal to the heteromodal (DMN and language network) and unimodal ends of the principal gradient of intrinsic connectivity.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Distanciamiento Físico , Imagen por Resonancia Magnética/métodos , Lenguaje
13.
J Appl Clin Med Phys ; : e14376, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695849

RESUMEN

PURPOSE: To propose a straightforward and time-efficient quality assurance (QA) approach of beam time delay for respiratory-gated radiotherapy and validate the proposed method on typical respiratory gating systems, Catalyst™ and AlignRT™. METHODS: The QA apparatus was composed of a motion platform and a Winston-Lutz cube phantom (WL3) embedded with metal balls. The apparatus was first scanned in CT-Sim and two types of QA plans specific for beam on and beam off time delay, respectively, were designed. Static reference images and motion testing images of the WL3 cube were acquired with EPID. By comparing the position differences of the embedded metal balls in the motion and reference images, beam time delays were determined. The proposed approach was validated on three linacs with either Catalyst™ or AlignRT™ respiratory gating systems. To investigate the impact of energy and dose rate on beam time delay, a range of QA plans with Eclipse (V15.7) were devised with varying energy and dose rates. RESULTS: For all energies, the beam on time delays in AlignRT™ V6.3.226, AlignRT™ V7.1.1, and Catalyst™ were 92.13 ± $ \pm $ 5.79 ms, 123.11 ± $ \pm $ 6.44 ms, and 303.44 ± $ \pm $ 4.28 ms, respectively. The beam off time delays in AlignRT™ V6.3.226, AlignRT™ V7.1.1, and Catalyst™ were 121.87 ± $ \pm $ 1.34 ms, 119.33 ± $ \pm $ 0.75 ms, and 97.69 ± $ \pm $ 2.02 ms, respectively. Furthermore, the beam on delays decreased slightly as dose rates increased for all gating systems, whereas the beam off delays remained unaffected. CONCLUSIONS: The validation results demonstrate the proposed QA approach of beam time delay for respiratory-gated radiotherapy was both reproducible and time-efficient to practice for institutions to customize accordingly.

14.
Odontology ; 112(1): 148-157, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37227552

RESUMEN

Extracellular matrix metalloproteinase inducer (EMMPRIN) plays critical roles in the regulation of inflammation and bone metabolism. The roles of EMMPRIN signaling in osteoclasts are worthy of deep study. The present study aimed to investigate bone resorption in periodontitis through the intervention of EMMPRIN signaling. The distribution of EMMPRIN in human periodontitis was observed. RANKL-induced osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) were treated with EMMPRIN inhibitor in vitro. Rats with ligation-induced periodontitis were treated with EMMPRIN inhibitor and harvested for microcomputed tomography scanning, histologic observation, immunohistochemistry, and double immunofluorescence analysis. Positive expressions of EMMPRIN could be found in the CD68+-infiltrating cells. Downregulated EMMPRIN restrained osteoclast differentiation of BMMs in vitro, which also inhibited MMP-9 expression (*P < 0.05). In vivo, EMMPRIN inhibitor restrained ligation-induced bone resorption by decreasing tartrate-resistant acid phosphatase-positive osteoclasts. Both EMMPRIN-positive and MMP-9-positive osteoclasts were less common in the EMMPRIN inhibitor groups than in the control groups. Intervention of EMMPRIN signaling in osteoclasts could probably provide a potential therapeutic target for attenuating ligation-induced bone resorption.


Asunto(s)
Resorción Ósea , Periodontitis , Ratones , Ratas , Humanos , Animales , Osteoclastos , Basigina/análisis , Basigina/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Microtomografía por Rayos X , Resorción Ósea/patología , Periodontitis/patología , Ligando RANK , Diferenciación Celular
15.
J Cancer Educ ; 39(3): 253-263, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38430453

RESUMEN

Chinese young adults (CYA), who are at an increasing risk of developing nonalcoholic fatty liver disease (NAFLD), which in turn increases the risk of liver cancer, are an ideal target population to deliver educational interventions to improve their awareness and knowledge of NAFLD and consequently reduce their risk of developing NAFLD. The purpose of this study was to determine the efficacy of two interventions to improve awareness and knowledge of NAFLD among CYA for the prevention of liver cancer. Between May and July 2021, 1373 undergraduate students aged 18 to 25 years in one university in China completed a web-based, self-administered survey distributed through WeChat app. One week after completion of the baseline survey, all eligible participants were randomly assigned to a pamphlet, a video intervention, or no intervention (control group), with follow-up assessments immediately and 1-month post-intervention. The 7-page pamphlet or 6.5-min video had information on NAFLD. Self-assessments included NAFLD awareness, lean NAFLD awareness, and knowledge scores of NAFLD. About 26% of participants had NAFLD awareness at baseline. Compared with controls, participants in both interventions showed significant improvement of awareness of NAFLD (pamphlet, + 46.0%; video, + 44.3%; control, + 18.7%; OR [95% CI], 3.13 [2.19-4.47] and 2.84 [1.98-4.08]), awareness of lean NAFLD (pamphlet, + 41.2%; video, + 43.0%; control, + 14.5%; OR [95% CI], 2.84 [1.62-4.99] and 2.61 [1.50-4.54]), and knowledge score of NAFLD (pamphlet, + 64.2%; video, + 68.9%; control, - 1.0%; OR [95% CI], 1.62 [1.47-1.80] and 1.67 [1.50-1.86]) at immediately post-intervention. Delivering NAFLD education through a pamphlet or video intervention was effective in improving the awareness and knowledge of NAFLD among CYA.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Masculino , Femenino , Adulto Joven , Adulto , Adolescente , China , Neoplasias Hepáticas/prevención & control , Folletos , Educación en Salud , Encuestas y Cuestionarios , Estudiantes/psicología , Pueblos del Este de Asia
16.
Angew Chem Int Ed Engl ; : e202319908, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693057

RESUMEN

Upon pathogenic stimulation, activated neutrophils release nuclear DNA into the extracellular environment, forming web-like DNA structures known as neutrophil extracellular traps (NETs), which capture and kill bacteria, fungi, and cancer cells. This phenomenon is commonly referred to as NETosis. Inspired by this, we introduce a cell surface-constrained web-like framework nucleic acids traps (FNATs) with programmable extracellular recognition capability and cellular behavior modulation. This approach facilitates dynamic key chemical signaling molecule recognition such as adenosine triphosphate (ATP), which is elevated in the extracellular microenvironment, and triggers FNA self-assembly. This, in turn, leads to in situ tightly interwoven FNAs formation on the cell surface, thereby inhibiting target cell migration. Furthermore, it activates a photosensitizer-capturing switch, chlorin e6 (Ce6), and induces cell self-destruction. This cascade platform provides new potential tools for visualizing dynamic extracellular activities and manipulating cellular behaviors using programmable in situ self-assembling DNA molecular devices.

17.
Gut ; 72(5): 855-869, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36690433

RESUMEN

BACKGROUND AND AIMS: Current practice on Helicobacter pylori infection mostly focuses on individual-based care in the community, but family-based H. pylori management has recently been suggested as a better strategy for infection control. However, the family-based H. pylori infection status, risk factors and transmission pattern remain to be elucidated. METHODS: From September 2021 to December 2021, 10 735 families (31 098 individuals) were enrolled from 29 of 31 provinces in mainland China to examine family-based H. pylori infection, related factors and transmission pattern. All family members were required to answer questionnaires and test for H. pylori infection. RESULTS: Among all participants, the average individual-based H. pylori infection rate was 40.66%, with 43.45% for adults and 20.55% for children and adolescents. Family-based infection rates ranged from 50.27% to 85.06% among the 29 provinces, with an average rate of 71.21%. In 28.87% (3099/10 735) of enrolled families, there were no infections; the remaining 71.13% (7636/10 735) of families had 1-7 infected members, and in 19.70% (1504/7636), all members were infected. Among 7961 enrolled couples, 33.21% had no infection, but in 22.99%, both were infected. Childhood infection was significantly associated with parental infection. Independent risk factors for household infection were infected family members (eg, five infected members: OR 2.72, 95% CI 1.86 to 4.00), living in highly infected areas (eg, northwest China: OR 1.83, 95% CI 1.57 to 2.13), and large families in a household (eg, family of three: OR 1.97, 95% CI 1.76 to 2.21). However, family members with higher education and income levels (OR 0.85, 95% CI 0.79 to 0.91), using serving spoons or chopsticks, more generations in a household (eg, three generations: OR 0.79, 95% CI 0.68 to 0.92), and who were younger (OR 0.57, 95% CI 0.46 to 0.70) had lower infection rates (p<0.05). CONCLUSION: Familial H. pylori infection rate is high in general household in China. Exposure to infected family members is likely the major source of its spread. These results provide supporting evidence for the strategic changes from H. pylori individual-based treatment to family-based management, and the notion has important clinical and public health implications for infection control and related disease prevention.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Niño , Adulto , Adolescente , Humanos , Infecciones por Helicobacter/epidemiología , Infecciones por Helicobacter/prevención & control , Familia , Factores de Riesgo , China/epidemiología , Estudios Epidemiológicos , Prevalencia
18.
Gut ; 72(11): 2051-2067, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37460165

RESUMEN

OBJECTIVE: Metabolic biomarkers are expected to decode the phenotype of gastric cancer (GC) and lead to high-performance blood tests towards GC diagnosis and prognosis. We attempted to develop diagnostic and prognostic models for GC based on plasma metabolic information. DESIGN: We conducted a large-scale, multicentre study comprising 1944 participants from 7 centres in retrospective cohort and 264 participants in prospective cohort. Discovery and verification phases of diagnostic and prognostic models were conducted in retrospective cohort through machine learning and Cox regression of plasma metabolic fingerprints (PMFs) obtained by nanoparticle-enhanced laser desorption/ionisation-mass spectrometry (NPELDI-MS). Furthermore, the developed diagnostic model was validated in prospective cohort by both NPELDI-MS and ultra-performance liquid chromatography-MS (UPLC-MS). RESULTS: We demonstrated the high throughput, desirable reproducibility and limited centre-specific effects of PMFs obtained through NPELDI-MS. In retrospective cohort, we achieved diagnostic performance with areas under curves (AUCs) of 0.862-0.988 in the discovery (n=1157 from 5 centres) and independent external verification dataset (n=787 from another 2 centres), through 5 different machine learning of PMFs, including neural network, ridge regression, lasso regression, support vector machine and random forest. Further, a metabolic panel consisting of 21 metabolites was constructed and identified for GC diagnosis with AUCs of 0.921-0.971 and 0.907-0.940 in the discovery and verification dataset, respectively. In the prospective study (n=264 from lead centre), both NPELDI-MS and UPLC-MS were applied to detect and validate the metabolic panel, and the diagnostic AUCs were 0.855-0.918 and 0.856-0.916, respectively. Moreover, we constructed a prognosis scoring system for GC in retrospective cohort, which can effectively predict the survival of GC patients. CONCLUSION: We developed and validated diagnostic and prognostic models for GC, which also contribute to advanced metabolic analysis towards diseases, including but not limited to GC.

19.
J Am Chem Soc ; 145(49): 27131-27139, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38018127

RESUMEN

Azoxy compounds exhibit a wide array of biological activities and possess distinctive chemical properties. Although there has been considerable interest in the biosynthetic mechanisms of azoxy metabolites, the enzymatic basis responsible for azoxy bond formation has remained largely enigmatic. In this study, we unveil the enzyme cascade that constructs the azoxy bond in valanimycin biosynthesis. Our research demonstrates that a pair of metalloenzymes, comprising a membrane-bound hydrazine synthase and a nonheme diiron azoxy synthase, collaborate to convert an unstable pathway intermediate to an azoxy product through a hydrazine-azo-azoxy pathway. Additionally, by characterizing homologues of this enzyme pair from other azoxy metabolite pathways, we propose that this two-enzyme cascade could represent a conserved enzymatic strategy for azoxy bond formation in bacteria. These findings provide significant mechanistic insights into biological N-N bond formation and should facilitate the targeted isolation of bioactive azoxy compounds through genome mining.


Asunto(s)
Bacterias , Hidrazinas
20.
J Am Chem Soc ; 145(46): 25203-25213, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37949820

RESUMEN

The massive COVID-19 vaccine roll-out campaign illuminated a range of rare side effects, the most dangerous of which─vaccine-induced immune thrombotic thrombocytopenia (VITT)─is caused by adenoviral (Ad)-vectored vaccines. VITT occurrence had been linked to the production of pathogenic antibodies that recognize an endogenous chemokine, platelet factor 4 (PF4). Mass spectrometry (MS)-based evaluation of the ensemble of anti-PF4 antibodies obtained from a VITT patient's blood indicates that the major component is a monoclonal antibody. Structural characterization of this antibody reveals several unusual characteristics, such as the presence of an N-glycan in the Fab segment and high density of acidic amino acid residues in the complementarity-determining regions. A recombinant version of this antibody (RVT1) was generated by transient expression in mammalian cells based on the newly determined sequence. It captures the key properties of VITT antibodies such as their ability to activate platelets in a PF4 concentration-dependent fashion. Homology modeling of the Fab segment reveals a well-defined polyanionic paratope, and the docking studies indicate that the polycationic segment of PF4 readily accommodates two Fab segments, cross-linking the antibodies to yield polymerized immune complexes. Their existence was verified with native MS by detecting assemblies as large as (RVT1)3(PF4)2, pointing out at FcγRIIa-mediated platelet activation as the molecular mechanism underlying VITT clinical manifestations. In addition to the high PF4 affinity, RVT1 readily binds other polycationic targets, indicating a polyreactive nature of this antibody. This surprising promiscuity not only sheds light on VITT etiology but also opens up a range of opportunities to manage this pathology.


Asunto(s)
Vacunas contra la COVID-19 , Trombocitopenia , Humanos , Anticuerpos Monoclonales , Vacunas contra la COVID-19/efectos adversos , Trombocitopenia/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA