Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Stem Cells ; 40(1): 22-34, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35511866

RESUMEN

The transition of embryonic stem cells from the epiblast stem cells (EpiSCs) to neural progenitor cells (NPCs), called the neural induction process, is crucial for cell fate determination of neural differentiation. However, the mechanism of this transition is unclear. Here, we identified a long non-coding RNA (linc1548) as a critical regulator of neural differentiation of mouse embryonic stem cells (mESCs). Knockout of linc1548 did not affect the conversion of mESCs to EpiSCs, but delayed the transition from EpiSCs to NPCs. Moreover, linc1548 interacts with the transcription factors OCT6 and SOX2 forming an RNA-protein complex to regulate the transition from EpiSCs to NPCs. Finally, we showed that Zfp521 is an important target gene of this RNA-protein complex regulating neural differentiation. Our findings prove how the intrinsic transcription complex is mediated by a lncRNA linc1548 and can better understand the intrinsic mechanism of neural fate determination.


Asunto(s)
Células Madre Embrionarias , Estratos Germinativos , Animales , Diferenciación Celular/genética , Ratones , Ratones Noqueados , ARN , ARN Largo no Codificante , Factores de Transcripción SOXB1
2.
Nature ; 457(7233): 1146-9, 2009 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-19122674

RESUMEN

Insulin resistance, a hallmark of type 2 diabetes, is a defect of insulin in stimulating insulin receptor signalling, which has become one of the most serious public health threats. Upon stimulation by insulin, insulin receptor recruits and phosphorylates insulin receptor substrate proteins, leading to activation of the phosphatidylinositol-3-OH kinase (PI(3)K)-Akt pathway. Activated Akt phosphorylates downstream kinases and transcription factors, thus mediating most of the metabolic actions of insulin. Beta-arrestins mediate biological functions of G-protein-coupled receptors by linking activated receptors with distinct sets of accessory and effecter proteins, thereby determining the specificity, efficiency and capacity of signals. Here we show that in diabetic mouse models, beta-arrestin-2 is severely downregulated. Knockdown of beta-arrestin-2 exacerbates insulin resistance, whereas administration of beta-arrestin-2 restores insulin sensitivity in mice. Further investigation reveals that insulin stimulates the formation of a new beta-arrestin-2 signal complex, in which beta-arrestin-2 scaffolds Akt and Src to insulin receptor. Loss or dysfunction of beta-arrestin-2 results in deficiency of this signal complex and disturbance of insulin signalling in vivo, thereby contributing to the development of insulin resistance and progression of type 2 diabetes. Our findings provide new insight into the molecular pathogenesis of insulin resistance, and implicate new preventive and therapeutic strategies against insulin resistance and type 2 diabetes.


Asunto(s)
Arrestinas/deficiencia , Resistencia a la Insulina/fisiología , Animales , Arrestinas/genética , Arrestinas/farmacología , Línea Celular , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Insulina/farmacología , Resistencia a la Insulina/genética , Ratones , Ratones Noqueados , Mutación/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal , Arrestina beta 2 , beta-Arrestinas
3.
Onco Targets Ther ; 15: 411-422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35469339

RESUMEN

Cell adhesion manifests as cell linkages to neighboring cells and/or the extracellular matrix (ECM). Migfilin is a widely expressed adhesion protein. It comprises three LIM domains in the C-terminal region and one proline-rich sequence in the N-terminal region. Through interplay with its various binding partners, such as Kindlin-2, Filamin, vasodilator-stimulated phosphoprotein (VASP) protein and the transcription factor CSX, Migfilin facilitates the dynamic association of connecting actomyosin fibers, orchestrating cell morphogenetic movement and cell adhesion, proliferation, migration, invasion, differentiation and signal transduction. In this review, to further elucidate the functional contributions of and pathogenesis induced by Migfilin, we focused on the structure of Migfilin and the targets which it directly binds with. We also summarized the role of Migfilin and its binding partners in the progression of different diseases and malignancies. As a possible candidate for coordinating various cellular processes and because of its association with both the pathogenesis and progression of certain tumors, Migfilin likely has utility as a therapeutic target against multiple diseases in the clinic.

4.
Front Cardiovasc Med ; 9: 912454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811717

RESUMEN

Myocardial infarction (MI) is one of the deadliest diseases in the world, and the changes at the molecular level after MI and the DNA methylation features are not clear. Understanding the molecular characteristics of the early stages of MI is of significance for the treatment of the disease. In this study, RNA-seq and MeDIP-seq were performed on heart tissue from mouse models at multiple time points (0 h, 10 min, 1, 6, 24, and 72 h) to explore genetic and epigenetic features that influence MI progression. Analysis based on a single point in time, the number of differentially expressed genes (DEGs) and differentially methylated regions (DMRs) increased with the time of myocardial infarction, using 0 h as a control group. Moreover, within 10 min of MI onset, the cells are mainly in immune response, and as the duration of MI increases, apoptosis begins to occur. Analysis based on time series data, the expression of 1012 genes was specifically downregulated, and these genes were associated with energy metabolism. The expression of 5806 genes was specifically upregulated, and these genes were associated with immune regulation, inflammation and apoptosis. Fourteen transcription factors were identified in the genes involved in apoptosis and inflammation, which may be potential drug targets. Analysis based on MeDIP-seq combined with RNA-seq methodology, focused on methylation at the promoter region. GO revealed that the downregulated genes with hypermethylation at 72 h were enriched in biological processes such as cardiac muscle contraction. In addition, the upregulated genes with hypomethylation at 72 h were enriched in biological processes, such as cell-cell adhesion, regulation of the apoptotic signaling pathway and regulation of angiogenesis. Among these genes, the Tnni3 gene was also present in the downregulated model. Hypermethylation of Tnni3 at 72 h after MI may be an important cause of exacerbation of MI.

6.
J Biol Chem ; 285(36): 27737-44, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20595388

RESUMEN

Abnormal activation of calpain is implicated in synaptic dysfunction and participates in neuronal death in Alzheimer disease (AD) and other neurological disorders. Pharmacological inhibition of calpain has been shown to improve memory and synaptic transmission in the mouse model of AD. However, the role and mechanism of calpain in AD progression remain elusive. Here we demonstrate a role of calpain in the neuropathology in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic mice, an established mouse model of AD. We found that overexpression of endogenous calpain inhibitor calpastatin (CAST) under the control of the calcium/calmodulin-dependent protein kinase II promoter in APP/PS1 mice caused a remarkable decrease of amyloid plaque burdens and prevented Tau phosphorylation and the loss of synapses. Furthermore, CAST overexpression prevented the decrease in the phosphorylation of the memory-related molecules CREB and ERK in the brain of APP/PS1 mice and improved spatial learning and memory. Interestingly, treatment of cultured primary neurons with amyloid-beta (Abeta) peptides caused an increase in the level of beta-site APP-cleaving enzyme 1 (BACE1), the key enzyme responsible for APP processing and Abeta production. This effect was inhibited by CAST overexpression. Consistently, overexpression of calpain in heterologous APP expressing cells up-regulated the level of BACE1 and increased Abeta production. Finally, CAST transgene prevented the increase of BACE1 in APP/PS1 mice. Thus, calpain activation plays an important role in APP processing and plaque formation, probably by regulating the expression of BACE1.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Calpaína/metabolismo , Regulación Enzimológica de la Expresión Génica , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Animales , Proteínas de Unión al Calcio/metabolismo , Muerte Celular , Línea Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Activación Enzimática , Femenino , Humanos , Masculino , Memoria , Ratones , Ratones Transgénicos , Fosforilación , Placa Amiloide/enzimología , Placa Amiloide/patología , Presenilina-1/genética , Sinapsis/metabolismo , Regulación hacia Arriba , Proteínas tau/metabolismo
7.
BMC Complement Med Ther ; 20(1): 347, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203388

RESUMEN

BACKGROUND: The aerial parts of Salvia miltiorrhiza, which was considered to be the waste part and discarded during the root harvest, is rich in protocatechuic aldehyde (PAI). This study investigated the health-promoting effects of extracts and PAI from the aerial parts of Salvia miltiorrhiza, including its anti-inflammatory effects and the underlying mechanisms of action in vitro and in vivo. METHOD: Purification of the sample paste of Salvia miltiorrhiza was accomplished using HPLC analysis. TheMTT (Methylthiazolyldiphenyl-tetrazolium bromide) assay was employed to determine the cell viability. The production of inflammatory factors was detected by ELISA assays. The histopathological analysis was used to analyse the lungs and livers of mice treated with PAI. Western blot was performed to reveal the mechanism of PAI in anti-inflammatory. RESULTS: The extracts and PAI from the aerial parts of Salvia miltiorrhiza inhibited TNF-α, IL-6 production and promoted the production of IL-10 in vivo in mice and in vitro in the macrophage cell line RAW264.7. NF-κB and MAPKs kinase phosphorylation were also suppressed by PAI in vivo and in vitro, indicating that PAI exhibited an anti-inflammatory effect. CONCLUSION: These findings suggest that the aerial parts of Salvia miltiorrhiza extract may serve as potential protective agents for inflammatory.


Asunto(s)
Antiinflamatorios/administración & dosificación , Benzaldehídos/administración & dosificación , Catecoles/administración & dosificación , Medicamentos Herbarios Chinos/administración & dosificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Salvia miltiorrhiza/química , Animales , Femenino , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7
9.
Oncotarget ; 8(37): 61338-61349, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-28977867

RESUMEN

Angiogenesis is crucially involved in many physiological and pathological processes including tumor growth, but the molecular mechanisms regulating angiogenesis are incompletely understood. In this study, we investigated the functions and mechanism of histone deacetylase 10 (HDAC10), a member of the HDAC II family, in regulation of angiogenesis. HDAC10 overexpression in human umbilical vein endothelial cells (HUVECs) promoted tube formation, whereas depletion of HDAC10 from HUVECs inhibited tube formation in vitro and in vivo. Mechanistically, HDAC10 overexpression increased extracellular-regulated kinase 1/2 (ERK1/2) activation, whereas depletion of HDAC10 inhibited ERK1/2 activation. Finally, HDAC10 promoted ERK1/2 phosphorylation by deacetylating the promoter of protein tyrosine phosphatase, non-receptor type 22 (PTPN22) and inhibiting the expression of PTPN22, which is a negative regulator of ERK phosphorylation. Collectively, our results identify HDAC10 as a key regulator of angiogenesis and reveal that HDAC10 functions in this process by binding and deacetylating the PTPN22 promoter and subsequently inhibiting PTPN22 expression, which in turn increases ERK1/2 phosphorylation. Our studies suggest that HDAC10 is a potential target for therapeutic intervention to inhibit angiogenesis and tumor growth.

10.
Oncotarget ; 7(37): 59388-59401, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27449083

RESUMEN

Histone deacetylase 10 (HDAC10) is a member of the class II HDACs, and its role in cancer is emerging. In this study, we found that HDAC10 is highly expressed in lung cancer tissues. It resides mainly in the cytoplasm of lung cancer cells but resides in the nucleus of adjacent normal cells. Further examinations revealed that HDAC10 resides in the cytoplasm in multiple lung cancer cell lines, including the A549, H358 and H460 cell lines, but mainly resides in the nucleus of normal lung epithelial 16HBE cells. A leucine-rich motif, R505L506L507C508V509A510L511, was identified as its nuclear localization signal (NLS), and a mutant (Mut-505-511) featuring mutations to A at each of its original R and L positions was found to be nuclear-localization defective. Functional analysis revealed that HDAC10 promoted lung cancer cell growth and that its knockdown induced cell cycle arrest and apoptosis. Mechanistic studies showed that HDAC10 knockdown significantly decreased the phosphorylation of AKT at Ser473 and that AKT expression significantly rescued the cell cycle arrest and apoptosis elicited by HDAC10 knockdown. A co-immunoprecipitation assay suggested that HDAC10 interacts with AKT and that inhibition of HDAC10 activity decreases its interaction with and phosphorylation of AKT. Finally, we confirmed that HDAC10 promoted lung cancer proliferation in a mouse model. Our study demonstrated that HDAC10 localizes and functions in the cytoplasm of lung cancer cells, thereby underscoring its potential role in the diagnosis and treatment of lung cancer.


Asunto(s)
Histona Desacetilasas/metabolismo , Neoplasias Pulmonares/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/genética , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Desnudos , Fosforilación , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA