Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(42): e2402534, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38850182

RESUMEN

In this study, the copper-nickel (Cu-Ni) bimetallic electrocatalysts for electrochemical CO2 reduction reaction(CO2RR) are fabricated by taking the finely designed poly(ionic liquids) (PIL) containing abundant Salen and imidazolium chelating sites as the surficial layer, wherein Cu-Ni, PIL-Cu and PIL-Ni interaction can be readily regulated by different synthetic scheme. As a proof of concept, Cu@Salen-PIL@Ni(NO3)2 and Cu@Salen-PIL(Ni) hybrids differ significantly in the types and distribution of Ni species and Cu species at the surface, thereby delivering distinct Cu-Ni cooperation fashion for the CO2RR. Remarkably, Cu@Salen-PIL@Ni(NO3)2 provides a C2+ faradaic efficiency (FEC2+) of 80.9% with partial current density (jC 2+) of 262.9 mA cm-2 at -0.80 V (versus reversible hydrogen electrode, RHE) in 1 m KOH in a flow cell, while Cu@Salen-PIL(Ni) delivers the optimal FEC2+ of 63.8% at jC2+ of 146.7 mA cm-2 at -0.78 V. Mechanistic studies indicates that the presence of Cu-Ni interfaces in Cu@Salen-PIL@Ni(NO3)2 accounts for the preserve of high-valence Cu(I) species under CO2RR conditions. It results in a high activity of both CO2-to-CO conversion and C-C coupling while inhibition of the competitive HER.

2.
Small ; 19(18): e2207219, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36720005

RESUMEN

The electrocatalytic transformation of carbon dioxide (CO2 ) to formate is a promising route for highly efficient conversion and utilization of CO2 gas, due to the low production cost and the ease of storage of formate. In this work, porous poly(ionic liquid) (PPIL)-based tin-silver (Sn-Ag) bimetallic hybrids (PPILm -Snx Ag10- x ) are prepared for high-performance formate electrolytic generation. Under optimal conditions, an excellent formate Faradaic efficiency of 95.5% with a high partial current density of 214.9 mA cm-2 is obtained at -1.03 V (vs reversible hydrogen electrode). Meanwhile, the high selectivity of formate (>≈83%) is maintained in a wide potential range (>630 mV). Mechanistic studies demonstrate that the presence of Ag-species is vital for the formation, maintenance, and high dispersion of tetravalent Sn(IV)-species, which accounts for the active sites for CO2 -to-formate conversion. Further, the introduction of Ag-species significantly enhances the activity by increasing the electron density near the Fermi energy level.

3.
Angew Chem Int Ed Engl ; 61(9): e202110657, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-34851536

RESUMEN

Electroreduction of CO2 on a polymer-modified Cu-based catalyst has shown high multi-electron reduction (>2 e- ) selectivity, however, most of the corresponding current densities are still too small to support industrial applications. In this work, we designed a poly(ionic liquid) (PIL)-based Cu0 -CuI tandem catalyst for the production of C2+ products with both high reaction rate and high selectivity. Remarkably, a high C2+ faradaic efficiency (FE C 2 + ) of 76.1 % with a high partial current density of 304.2 mA cm-2 is obtained. Mechanistic studies reveal the numbers and highly dispersed Cu0 -PIL-CuI interfaces are vital for such reactivity. Specifically, Cu nanoparticles derived Cu0 -PIL interfaces account for high current density and a moderate C2+ selectivity, whereas CuI species derived PIL-CuI interfaces exhibit high activity for C-C coupling with the local enriched *CO intermediate. Furthermore, the presence of the PIL layer promotes the C2+ selectivity by lowering the barrier of C-C coupling.

4.
ACS Appl Mater Interfaces ; 15(2): 3633-3643, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598181

RESUMEN

In this study, a tungstated zirconia (WOx/ZrO2) catalyst was developed for the continuous synthesis of adiponitrile (ADN) by gas-phase nitrilation of dimethyl adipate (DMA) with NH3. The highest TOFADN could be reached on WOx/ZrO2 bearing ∼1D WOx species (highly dispersed and discontinuous status) at the surface, which, however, delivered the poorest selectivity toward nitrilation (SADN+MCP). In comparison, both efficient and selective transformation of DMA to ADN was achieved by fabricating WOx/ZrO2 with continuously distributed oligomeric WOx species (∼2D) at the surface, either by varying the dosage of the W-reagent in the preparation of WOx(m)/ZrO2 or by doping a proper amount of the Mn element into WOx(5.0)/ZrO2, bearing WO3 NPs. Furthermore, the in situ diffuse reflectance infrared Fourier transform spectroscopy investigations of both independent and competitive adsorptions of ester functionality and NH3 over W-O-Zr, W-O-W, and Zr-O-Zr boundaries at the surface clarified the synergistic effect of these species in the activation of DMA/NH3 and thereby nitrilation.

5.
ACS Appl Mater Interfaces ; 15(26): 31533-31542, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37341628

RESUMEN

The electrocatalytic reduction of CO2 to CO with high efficiency is one of the most promising approaches for CO2 conversion due to its considerable economic feasibility and broad application prospects. In this study, three Ag@COF-R (R = -H, -OCH3, -OH) hybrids were facilely fabricated by impregnating silver acetate (AgOAc) into respective covalent organic frameworks (COFs) prepared in advance. They differ significantly in the crystallinity, porosity, distribution, size, and electronic configuration of AgOAc species, which thereby influences both the activity and the selectivity of electrolytic CO2-to-CO transformation. Impressively, Ag@COF-OCH3 provided a high FECO of 93.0% with a high jCO of 213.9 mA cm-2 at -0.87 V (vs reversible hydrogen electrode, RHE) in 1 M KOH using a flow cell. In addition, it exhibited long-term durability at 100 mA cm-2 for 30 h.

6.
Fundam Res ; 2(6): 937-945, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38933384

RESUMEN

Electrocatalytic reduction of CO2 (CO2RR) to multi-electron (> 2e-) products provides a green and sustainable route for producing fuels and chemicals. Introducing the second metal element is a feasible strategy for "managing" the key intermediate on Cu-based materials to further improve the CO2RR catalytic performance. In this work, palladium, which promises the generation of CO, was introduced into the poly(ionic liquid)-based copper hybrid (Cu@PIL) to construct a novel Cu-Pd bimetallic electrocatalyst (Cu@PIL@Pd). Remarkably, with a small dosage of palladium (2.0 mol% compared with Cu), a high faradaic efficiency (FE) for C2+ products (68.7%) was achieved at -1.01 V (with respect to the reversible hydrogen electrode (RHE), the same below) with a high partial current density of 178.3 mA cm-2. Meanwhile, high selectivity towards CH4 (FE = 42.5%) and corresponding partial current density of 172.8 mA cm-2 were obtained on the same catalyst at -1.24 V, signifying a significant potential-dependent selectivity. Mechanistic studies reveal that both copper and palladium oxides are reduced to metallic states during the CO2RR. The presence of the adjoint copper phase and the highly dispersed electrostatic layer promote the generation of CO on the palladium components (both the PdO2 phase and the Pd(II) site). Besides, the local CO* was enriched by the significant diffusion resistance of CO in the PIL layer. The spillover of CO* from Pd sites to the adjoint Cu sites, accompanied by the increased local concentration of CO* around Cu sites, accounted for the observed good CO2RR catalytic performance, especially the high C2+ product selectivity.

7.
ChemSusChem ; 13(1): 88-96, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31638336

RESUMEN

The reliable and accurate quantification of ammonia in electrochemical and photochemical experiments has been a technical challenge owing to the extremely low concentration of generated ammonia, interference from trace amounts of cations and organic compounds, and ammonia contamination from various sources. As a result, overestimation and significant errors may happen in many research works. Herein, accuracy and precision of ion chromatography (IC) are evaluated at different pH; excellent performance with a low detection limit (<2 µg L-1 ) under acidic and neutral conditions is found, whereas the linearity is unsatisfactory in the low NH4 + concentration range (0-100 µg L-1 ) under alkaline conditions. High concentrations of Li+ and Na+ are difficult to separate from NH4 + in conventional IC, but this can be solved by employing a high-exchange-capacity column or gradient elution. The interference effects of 14 common transition metal cations and 6 common organic compounds on the quantification of ammonium with low-level concentration (500 µg L-1 ) using IC are systematically investigated, and the results demonstrate good robustness. The overestimation caused by ammonia contamination from reagent water, surroundings, and even the analytical grade of inorganic and organic reagents are confirmed and the results indicate the necessity to prepare and test fresh electrolyte solutions before each experiment, owing to the high sensitivity of acidic and neutral solutions to ammonia contamination from the surroundings. The ammonization of a Nafion membrane during experiments and the underestimation in quantification are also discussed. Finally, a reliable level of synthesized ammonia is identified and some recommendations are presented to improve the reliability and accuracy of ammonia quantification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA