Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Biochem ; 477(12): 2829-2839, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35670901

RESUMEN

Hypoxia can cause Epithelial-mesenchymal transition (EMT) in renal tubular cells, and in turn, renal fibrosis. We tested the expression of TRIM46, a member of tripartite motif-containing (TRIM) family proteins, and mesenchymal markers under hypoxia. Our results showed that hypoxia significantly enhanced expression of TRIM46 in HK2 human renal proximal tubular epithelial cells. Our data further showed that hypoxia led to upregulated expression of mesenchymal markers including α-smooth muscle actin, vimentin, and Snail, and downregulated expression of epithelial marker E-cadherin, coupled with an increased abundance of nuclear ß-catenin. However, such effects were reversed when TRIM46 expression was knocked down. TRIM46 overexpression had similar effects as hypoxia exposure, and such effects were reversed when cells were treated with XAV-939, a selective inhibitor for ß-catenin. Furthermore, we found that TRIM46 promoted ubiquitination and proteasomal degradation of Axin1 protein, a robust negative regulator of Wnt/ß-catenin signaling activity. Finally, increased TRIM46 coupled with decreased Axin1 was observed in a rat renal fibrosis model. These data suggest a novel mechanism contributing to EMT that mediates hypoxia-induced renal fibrosis. Our results suggest that selectively inhibiting this pathway that activates fibrosis in human kidney may lead to development of a novel therapeutic approach for managing this disease.


Asunto(s)
Transición Epitelial-Mesenquimal , Enfermedades Renales , Vía de Señalización Wnt , Animales , Humanos , Ratas , Proteína Axina/genética , beta Catenina/metabolismo , Fibrosis , Hipoxia , Enfermedades Renales/metabolismo
2.
J Med Food ; 27(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38060708

RESUMEN

Theaflavins are the characteristic polyphenols in black tea which can be enzymatically synthesized. In this review, the effects and molecular mechanisms of theaflavins on obesity and its comorbidities, including dyslipidemia, insulin resistance, hepatic steatosis, and atherosclerosis, were summarized. Theaflavins ameliorate obesity potentially via reducing food intake, inhibiting pancreatic lipase to reduce lipid absorption, activating the adenosine monophosphate-activated protein kinase (AMPK), and regulating the gut microbiota. As to the comorbidities, theaflavins ameliorate hypercholesterolemia by inhibiting micelle formation to reduce cholesterol absorption. Theaflavins improve insulin sensitivity by increasing the signaling of protein kinase B, eliminating glucose toxicity, and inhibiting inflammation. Theaflavins ameliorate hepatic steatosis via activating AMPK. Theaflavins reduce atherosclerosis by upregulating nuclear factor erythropoietin-2-related factor 2 signaling and inhibiting plasminogen activator inhibitor 1. In randomized controlled trails, black tea extracts containing theaflavins reduced body weight in overweight people and improved glucose tolerance in healthy adults. The amelioration on the hyperlipidemia and the prevention of coronary artery disease by black tea extracts were supported by meta-analysis.


Asunto(s)
Aterosclerosis , Biflavonoides , Catequina , Humanos , Proteínas Quinasas Activadas por AMP , Antioxidantes/farmacología , , Catequina/farmacología , Biflavonoides/farmacología , Biflavonoides/uso terapéutico , Obesidad/tratamiento farmacológico , Glucosa
3.
Heliyon ; 9(7): e17908, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37483732

RESUMEN

Renal fibrosis (RF) is a common pathological feature of chronic kidney disease (CKD), which remains a major public health problem. As now, there is still lack of chemical or biological drugs to reverse RF. Shen-shuai-yi Recipe (SSYR) is a classical Chinese herbal formula for the treatment of CKD. However, the effects and mechanisms of SSYR in treating RF are still not clear. In this study, the active constituents SSYR for treating RF were explored by UHPLC-Q-Orbitrap HRMS. Bioinformatics analyses were employed to analyze the key pharmacological targets and the core active constituents of SSYR in the treatment of RF. In experimental validation, vehicle or SSYR at doses of 2.12 g/kg/d and 4.25 g/kg/d were given by orally to unilateral ureteric obstruction (UUO) mice. 13 days after treatment, we detected the severity of renal fibrosis, extracellular collagen deposition and pre-fibrotic signaling pathways. Bioinformatics analysis suggested that signal transducer and activator of transcription 3 (STAT3) was the core target and lenticin, luteolin-7-O-rutinoside, hesperidin, kaempferol-3-O-rutinoside, and 3,5,6,7,8,3',4'-heptamethoxyflavone were the key constituents in SSYR for treating RF. SSYR significantly reduced the expressions of fibronectin (FN), α-smooth muscle actin (α-SMA), collagen-I and alleviated renal interstitial collagen deposition in UUO kidneys. In mechanism, SSYR potently blocked the phosphorylation of STAT3 and Smad3 and suppressed the expression of connective tissue growth factor (CTGF). Collectively, SSYR can ameliorate RF via inhibiting the phosphorylation of STAT3 and its downstream and reducing the collagen deposition, suggesting that SSYR can be developed as a novel medicine for treating RF.

4.
Front Mol Biosci ; 7: 627827, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585566

RESUMEN

Glomerular hypertrophy is an early morphological alteration in diabetic nephropathy. Cyclin-Dependent Kinases have been shown to be required for high glucose (HG)-induced hypertrophy; however, the upstream regulators of CDKN1B in glomerular hypertrophy remain unclear. Herein we describe a novel pathway in which Long noncoding RNA (lncRNA) NEAT1 regulates the progression of mesangial cell hypertrophy via a competing endogenous RNA (ceRNA) mechanism. Real-time PCR was performed to detect the relative NEAT1 and miR-222-3p expressions and further confirmed the relationship between NEAT1 and miR-222-3p. Cell cycle was evaluated by flow cytometry. The related mechanisms were explored by Western blot, RNA immunoprecipitation and chromatin immunoprecipitation assay. We show that NEAT1 forms double stranded RNA (dsRNA) with miR-222-3p, thus limiting miR-222-3p's binding with CDKN1B. This release of CDKN1B mRNA leads to elevated CDKN1B protein expression, resulting in hypertrophy. In addition, we demonstrated that STAT3 which is activated by HG induces the transcription of NEAT1 by binding to its promoter. Our findings underscore an unexpected role of lncRNAs on gene regulation and introduce a new mode of proliferation regulation in mesangial cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA