Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Ecotechnol ; 8: 100125, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36156990

RESUMEN

The road transport sector in megacities is confronted with pressing local air pollution and carbon dioxide (CO2) control issues. To determine effective policy instruments for saving energy and the co-control of air pollutants and CO2, several mainstream measures were examined and compared in Chongqing's road transport sector from 2017 to 2035. An integration assessment framework was developed by combining the Long-range Energy Alternatives Planning (LEAP) system and a set of quantitative methods for evaluating the co-benefits of emission reductions (including the air pollutant equivalent (APeq), co-control coordinate system, and pollutant reduction cross-elasticity (Elsa/b)). Results showed that the shifting transportation modes scenario presented the most significant potential for energy-saving and emission reductions, reducing energy use by 30.9% and air pollutants and CO2 emissions by approximately 27-32% compared with the business as usual (BAU) scenario in 2035. The improving energy efficiency scenario also provided significant co-benefits for reducing air pollutants and CO2 emissions. Nevertheless, the promoting alternative fuel scenario may increase fine particulate matter (PM2.5) emissions by 2.2% compared to BAU in 2035 under the cleanness of regional electricity in 2017. Our findings suggest that the shifting transportation modes were effective measures to reduce air pollutants and CO2 in the short term synergistically, and highlighted the importance of cleaner electricity generation to develop electric vehicles in the medium and long term.

2.
Huan Jing Ke Xue ; 42(8): 3595-3603, 2021 Aug 08.
Artículo en Zh | MEDLINE | ID: mdl-34309246

RESUMEN

In late August 2020, a period of O3 pollution occurred in the main urban area of Chongqing and lasted for approximately 2 weeks (till early September). Ambient air samples, collected using Summa Canisters and DNPH sampling columns at three observation sites in the main urban area, were used to study the composition, photochemical reaction activity, and source apportionment of volatile organic compounds (VOCs) during the period of O3 pollution. The results showed that the mean volume fraction of TVOCs in the main urban area of Chongqing during the observation period was 45.08×10-9, and the components were ranked by volume fraction in the following order:OVOCs, alkanes, halohydrocarbons, alkenes, aromatics, and alkynes. Formaldehyde, ethylene, and acetone made up the higher volume fraction of VOCs, together accounting for more than 30% of TVOCs. OVOCs and alkenes contributed more to · OH loss rate (Li·OH) and ozone formation potential (OFP) and were the key VOCs components for ozone generation. The main active species in the OVOCs component were formaldehyde, acetaldehyde, and acrolein; the main active species in the alkene component were isoprene, ethylene, and n-butene. The ratio of xylene to ethylbenzene in VOCs was low, and they showed a significant correlation, indicating that the VOCs air mass in the main urban area was highly aging and affected by long-distance transmission from other areas. The source apportionment results of the PMF model showed five main sources of VOCs, namely secondary generation (27.67%), vehicle exhaust (26.56%), industrial emission (17.86%), plant (14.51%), and fossil fuel combustion (13.4%).


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Ozono/análisis , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA