Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 48(12): 6530-6546, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32432680

RESUMEN

OGG1 initiated base excision repair (BER) is the major pathway for repair of oxidative DNA base damage 8-oxoguanine (8-oxoG). Here, we report that RECQL4 DNA helicase, deficient in the cancer-prone and premature aging Rothmund-Thomson syndrome, physically and functionally interacts with OGG1. RECQL4 promotes catalytic activity of OGG1 and RECQL4 deficiency results in defective 8-oxoG repair and increased genomic 8-oxoG. Furthermore, we show that acute oxidative stress leads to increased RECQL4 acetylation and its interaction with OGG1. The NAD+-dependent protein SIRT1 deacetylates RECQL4 in vitro and in cells thereby controlling the interaction between OGG1 and RECQL4 after DNA repair and maintaining RECQL4 in a low acetylated state. Collectively, we find that RECQL4 is involved in 8-oxoG repair through interaction with OGG1, and that SIRT1 indirectly modulates BER of 8-oxoG by controlling RECQL4-OGG1 interaction.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN , RecQ Helicasas/metabolismo , Sirtuina 1/metabolismo , Acetilación , Línea Celular Tumoral , Guanosina/análogos & derivados , Guanosina/genética , Células HEK293 , Humanos , Estrés Oxidativo , Unión Proteica
2.
Acta Pharmacol Sin ; 34(6): 741-6, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23736002

RESUMEN

In the past few years, progress being made in stem cell studies has incontestably led to the hope of developing cell replacement based therapy for diseases deficient in effective treatment by conventional ways. The induced pluripotent stem cells (iPSCs) are of great interest of cell therapy research because of their unrestricted self-renewal and differentiation potentials. Proof of principle studies have successfully demonstrated that iPSCs technology would substantially benefit clinical studies in various areas, including neurological disorders, hematologic diseases, cardiac diseases, liver diseases and etc. On top of this, latest advances of gene editing technologies have vigorously endorsed the possibility of obtaining disease-free autologous cells from patient specific iPSCs. Here in this review, we summarize current progress of stem cell therapy research with special enthusiasm in iPSCs studies. In addition, we compare current gene editing technologies and discuss their potential implications in clinic application in the future.


Asunto(s)
Tecnología Biomédica/métodos , Células Madre Pluripotentes Inducidas/trasplante , Trasplante de Células Madre/métodos , Animales , Diferenciación Celular/fisiología , Marcación de Gen/métodos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Investigación con Células Madre
3.
Cells ; 11(3)2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35159331

RESUMEN

DNA mismatch repair (MMR) is a highly conserved pathway that corrects both base-base mispairs and insertion-deletion loops (IDLs) generated during DNA replication. Defects in MMR have been linked to carcinogenesis and drug resistance. However, the regulation of MMR is poorly understood. Interestingly, CNOT6 is one of four deadenylase subunits in the conserved CCR4-NOT complex and it targets poly(A) tails of mRNAs for degradation. CNOT6 is overexpressed in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML) and androgen-independent prostate cancer cells, which suggests that an altered expression of CNOT6 may play a role in tumorigenesis. Here, we report that a depletion of CNOT6 sensitizes human U2OS cells to N-methyl-N'nitro-N-nitrosoguanidine (MNNG) and leads to enhanced apoptosis. We also demonstrate that the depletion of CNOT6 upregulates MMR and decreases the mutation frequency in MMR-proficient cells. Furthermore, the depletion of CNOT6 increases the stability of mRNA transcripts from MMR genes, leading to the increased expression of MMR proteins. Our work provides insight into a novel CNOT6-dependent mechanism for regulating MMR.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN , Apoptosis/genética , Reparación de la Incompatibilidad de ADN/genética , Humanos , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Nat Commun ; 6: 10068, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26632666

RESUMEN

PTEN is a tumour suppressor frequently mutated in many types of cancers. Here we show that targeted disruption of PTEN leads to neoplastic transformation of human neural stem cells (NSCs), but not mesenchymal stem cells. PTEN-deficient NSCs display neoplasm-associated metabolic and gene expression profiles and generate intracranial tumours in immunodeficient mice. PTEN is localized to the nucleus in NSCs, binds to the PAX7 promoter through association with cAMP responsive element binding protein 1 (CREB)/CREB binding protein (CBP) and inhibits PAX7 transcription. PTEN deficiency leads to the upregulation of PAX7, which in turn promotes oncogenic transformation of NSCs and instates 'aggressiveness' in human glioblastoma stem cells. In a large clinical database, we find increased PAX7 levels in PTEN-deficient glioblastoma. Furthermore, we identify that mitomycin C selectively triggers apoptosis in NSCs with PTEN deficiency. Together, we uncover a potential mechanism of how PTEN safeguards NSCs, and establish a cellular platform to identify factors involved in NSC transformation, potentially permitting personalized treatment of glioblastoma.


Asunto(s)
Neoplasias Encefálicas/enzimología , Glioblastoma/enzimología , Células Madre Neoplásicas/enzimología , Células-Madre Neurales/enzimología , Fosfohidrolasa PTEN/deficiencia , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/patología , Humanos , Masculino , Ratones , Ratones SCID , Células Madre Neoplásicas/citología , Células-Madre Neurales/citología , Fosfohidrolasa PTEN/genética , Fenotipo
5.
Science ; 348(6239): 1160-3, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25931448

RESUMEN

Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1α and nuclear lamina-heterochromatin anchoring protein LAP2ß. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Exodesoxirribonucleasas/metabolismo , Heterocromatina/metabolismo , Células Madre Mesenquimatosas/metabolismo , RecQ Helicasas/metabolismo , Síndrome de Werner/metabolismo , Envejecimiento/genética , Animales , Diferenciación Celular , Centrómero/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Exodesoxirribonucleasas/genética , Técnicas de Inactivación de Genes , Células HEK293 , Heterocromatina/química , Humanos , Proteínas de la Membrana/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Modelos Biológicos , RecQ Helicasas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Síndrome de Werner/genética , Helicasa del Síndrome de Werner
6.
Cell Metab ; 18(3): 325-32, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23850316

RESUMEN

Due to their fundamental role in energy production, mitochondria have been traditionally known as the powerhouse of the cell. Recent discoveries have suggested crucial roles of mitochondria in the maintenance of pluripotency, differentiation, and reprogramming of induced pluripotent stem cells (iPSCs). While glycolytic energy production is observed at pluripotent states, an increase in mitochondrial oxidative phosphorylation is necessary for cell differentiation. Consequently, a transition from somatic mitochondrial oxidative metabolism to glycolysis seems to be required for successful reprogramming. Future research aiming to dissect the roles of mitochondria in the establishment and homeostasis of pluripotency, as well as combining cell reprogramming with gene editing technologies, may unearth novel insights into our understanding of mitochondrial diseases and aging.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Mitocondrias/metabolismo , Animales , Diferenciación Celular , Reprogramación Celular , Metabolismo Energético , Glucólisis , Células Madre Pluripotentes Inducidas/metabolismo , Fosforilación Oxidativa
7.
Protein Cell ; 3(2): 91-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22410787

RESUMEN

Many neurodegenerative disorders such as Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and others often occur as a result of progressive loss of structure or function of neurons. Recently, many groups were able to generate neural cells, either differentiated from induced pluripotent stem cells (iPSCs) or converted from somatic cells. Advances in converted neural cells have opened a new era to ease applications for modeling diseases and screening drugs. In addition, the converted neural cells also hold the promise for cell replacement therapy (Kikuchi et al., 2011; Krencik et al., 2011; Kriks et al., 2011; Nori et al., 2011; Rhee et al., 2011; Schwartz et al., 2012). Here we will mainly discuss most recent progress on using converted functional neural cells to treat neurological diseases and highlight potential clinical challenges and future perspectives.


Asunto(s)
Neuronas/citología , Esclerosis Amiotrófica Lateral/terapia , Animales , Transdiferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Pluripotentes Inducidas/citología , Neuronas/trasplante , Enfermedad de Parkinson/terapia , Accidente Cerebrovascular/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA