Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Funct Mater ; 31(44)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36329867

RESUMEN

Cell encapsulation within hydrogel droplets is transforming what is feasible in multiple fields of biomedical science such as tissue engineering and regenerative medicine, in vitro modeling, and cell-based therapies. Recent advances have allowed researchers to miniaturize material encapsulation complexes down to single-cell scales, where each complex, termed a single-cell microgel, contains only one cell surrounded by a hydrogel matrix while remaining <100 µm in size. With this achievement, studies requiring single-cell resolution are now possible, similar to those done using liquid droplet encapsulation. Of particular note, applications involving long-term in vitro cultures, modular bioinks, high-throughput screenings, and formation of 3D cellular microenvironments can be tuned independently to suit the needs of individual cells and experimental goals. In this progress report, an overview of established materials and techniques used to fabricate single-cell microgels, as well as insight into potential alternatives is provided. This focused review is concluded by discussing applications that have already benefited from single-cell microgel technologies, as well as prospective applications on the cusp of achieving important new capabilities.

2.
Microbiology (Reading) ; 160(Pt 12): 2694-2709, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25269449

RESUMEN

Ferroglobus placidus was discovered to oxidize completely the aromatic amino acids tyrosine, phenylalanine and tryptophan when Fe(III) oxide was provided as an electron acceptor. This property had not been reported previously for a hyperthermophilic archaeon. It appeared that F. placidus follows a pathway for phenylalanine and tryptophan degradation similar to that of mesophilic nitrate-reducing bacteria, Thauera aromatica and Aromatoleum aromaticum EbN1. Phenylacetate, 4-hydroxyphenylacetate and indole-3-acetate were formed during anaerobic degradation of phenylalanine, tyrosine and tryptophan, respectively. Candidate genes for enzymes involved in the anaerobic oxidation of phenylalanine to phenylacetate (phenylalanine transaminase, phenylpyruvate decarboxylase and phenylacetaldehyde : ferredoxin oxidoreductase) were identified in the F. placidus genome. In addition, transcription of candidate genes for the anaerobic phenylacetate degradation, benzoyl-CoA degradation and glutaryl-CoA degradation pathways was significantly upregulated in microarray and quantitative real-time-PCR studies comparing phenylacetate-grown cells with acetate-grown cells. These results suggested that the general strategies for anaerobic degradation of aromatic amino acids are highly conserved amongst bacteria and archaea living in both mesophilic and hyperthermophilic environments. They also provided insights into the diverse metabolism of Archaeoglobaceae species living in hyperthermophilic environments.


Asunto(s)
Aminoácidos Aromáticos/metabolismo , Archaeoglobales/metabolismo , Anaerobiosis , Biotransformación , Perfilación de la Expresión Génica , Ácidos Indolacéticos/metabolismo , Redes y Vías Metabólicas/genética , Análisis por Micromatrices , Datos de Secuencia Molecular , Oxidación-Reducción , Fenilacetatos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
3.
Microsyst Nanoeng ; 9: 90, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448969

RESUMEN

Mechanical properties of biological cells have been shown to correlate with their biomolecular state and function, and therefore methods to measure these properties at scale are of interest. Emerging microfluidic technologies can measure the mechanical properties of cells at rates over 20,000 cells/s, which is more than four orders of magnitude faster than conventional instrumentation. However, precise and repeatable means to calibrate and test these new tools remain lacking, since cells themselves are by nature variable. Commonly, microfluidic tools use rigid polymer microspheres for calibration because they are widely available in cell-similar sizes, but conventional microspheres do not fully capture the physiological range of other mechanical properties that are equally important to device function (e.g., elastic modulus and density). Here, we present for the first time development of monodisperse polyacrylamide microparticles with both tunable elasticity and tunable density. Using these size, elasticity, and density tunable particles, we characterized a custom acoustic microfluidic device that makes single-cell measurements of mechanical properties. We then applied the approach to measure the distribution of the acoustic properties within samples of human leukocytes and showed that the system successfully discriminates lymphocytes from other leukocytes. This initial demonstration shows how the tunable microparticles with properties within the physiologically relevant range can be used in conjunction with microfluidic devices for efficient high-throughput measurements of mechanical properties at single-cell resolution.

4.
Lab Chip ; 19(18): 2978-2992, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31410419

RESUMEN

Autologous cellular therapies based on modifying T cells to express chimeric antigen receptor genes have been highly successful in treating hematological cancers. Deployment of these therapies is limited by the complexity and costs associated with their manufacturing. Transitioning these processes from virus-based methods for gene delivery to a non-viral method, such as electroporation, has the potential to greatly reduce cost and manufacturing time while increasing safety and efficacy. Major challenges with electroporation are the negative impacts on cell health associated with exposure to high-magnitude electric fields, and that most commercial bulk electroporators are low-precision instruments designed for manually-operated, lower-throughput batch processing of cells. Negative effects on cell health can be mitigated by use of specialized electroporation medias, but this adds processing steps, and long-term exposure to these medias can reduce transfection efficiency and post-transfection viability. To enable automated, clinical-scale production of cellular therapies using electrotransfection in specialized medias, we developed a high-precision microfluidic platform that automatically and continuously transfers cells from culture media into electroporation media using acoustophoresis, and then immediately applies electric fields from integrated electrodes. This limits cell residence time in electroporation media to seconds, and enables high transfection efficiency with minimum impact on cell viability. We tested our system by transferring primary human T cells from a standard cell media to electroporation media, and then transfecting them with mRNA encoding an mCherry fluorescent protein. We achieved a media exchange efficiency of 86% and transfection efficiency of up to 60%, with less than a 5% reduction in viability.


Asunto(s)
Automatización , Técnicas Analíticas Microfluídicas , Linfocitos T/citología , Células Cultivadas , Electrodos , Electroporación/instrumentación , Humanos , Técnicas Analíticas Microfluídicas/instrumentación
5.
SLAS Technol ; 23(4): 352-363, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29346013

RESUMEN

Emerging cell therapies have created new demands for instruments that will increase processing efficiency. Purification of lymphocytes prior to downstream steps of gene transfer currently relies on centrifugal separation, which has drawbacks in output sample purity and process automation. Here, we present an alternative approach to blood cell purification using acoustic forces in plastic microchannels. We provide details regarding the system's ability to purify lymphocytes relative to other blood cell types while maintaining a high overall recovery, testing performance starting from leukapheresis product, buffy coat, and whole blood. Depending on settings, the device achieves for lymphocytes up to 97% purity and up to 68% recovery, and depletes 98% of monocytes while also reducing red cells and platelets. We expect that future scale-up of our system for increased throughput will enable its incorporation in the cell therapy workflow, and that it could ultimately reduce costs and expand access for patients.


Asunto(s)
Acústica/instrumentación , Separación Celular/métodos , Linfocitos/citología , Microfluídica/instrumentación , Plásticos/química , Plaquetas/citología , Supervivencia Celular , Eritrocitos/citología , Humanos , Monocitos/citología , Imagen Óptica , Transductores
6.
J Pharm Pharmacol ; 67(10): 1371-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25920505

RESUMEN

OBJECTIVE: This study aims to examine the potential of radiomimetic compounds as antimicrobial therapeutics, as the recent advances in radiomimetic targeting as well as rapid increase of multidrug resistant bacteria make these compounds attractive for future development. METHODS: Representative radiomimetics from each of the three major categories was examined; C-1027 and neocarzinostatin from the protein-chromophore enediyne family; Calicheamicin from the non-protein chromophore enediyne family and Bleomycin and Tallysomycin S10b from the glycopeptide family. The activity of these compounds was examined against 12 distinct bacteria species. Inhibition was determined using disc diffusion assays and a subsequent examination of minimum inhibitory concentration of a representative organism. The onset of action of the compounds was also determined by incubating the organisms with drug in liquid media, before plating, and then determining if growth occurred. RESULTS: We found that the radiomimetic glycopeptides were more active against Gram-negative species, while the enediynes were more effective against Gram-positive species. The radiomimetics also maintained their rapid onset of action, working as quickly as 5 min. CONCLUSIONS: Radiomimetic compounds have activity against a wide variety of microorganisms and would support the development of radiomimetic-antibody conjugates as potential antibiotics as an option against severe bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Antibióticos Antineoplásicos/farmacología , Enediinos/farmacología , Glicopéptidos/farmacología , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA