Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36232593

RESUMEN

Type I interferons (IFN), including IFNß, play a protective role in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Type I IFNs are induced by the stimulation of innate signaling, including via cytoplasmic RIG-I-like receptors. In the present study, we investigated the potential effect of a chimeric protein containing the key domain of RIG-I signaling in the production of CNS endogenous IFNß and asked whether this would exert a therapeutic effect against EAE. We intrathecally administered an adeno-associated virus vector (AAV) encoding a fusion protein comprising RIG-I 2CARD domains (C) and the first 200 amino acids of mitochondrial antiviral-signaling protein (MAVS) (M) (AAV-CM). In vivo imaging in IFNß/luciferase reporter mice revealed that a single intrathecal injection of AAV-CM resulted in dose-dependent and sustained IFNß expression within the CNS. IFNß expression was significantly increased for 7 days. Immunofluorescent staining in IFNß-YFP reporter mice revealed extraparenchymal CD45+ cells, choroid plexus, and astrocytes as sources of IFNß. Moreover, intrathecal administration of AAV-CM at the onset of EAE induced the suppression of EAE, which was IFN-I-dependent. These findings suggest that accessing the signaling pathway downstream of RIG-I represents a promising therapeutic strategy for inflammatory CNS diseases, such as MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Interferón Tipo I , Aminoácidos , Animales , Antivirales , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Interferón Tipo I/metabolismo , Interferón beta/genética , Interferón beta/metabolismo , Ratones , Proteínas Recombinantes de Fusión , Transducción de Señal
2.
Scand J Immunol ; 92(5): e12963, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32851668

RESUMEN

Myeloid cells represent the major cellular component of innate immune responses. Myeloid cells include monocytes and macrophages, granulocytes (neutrophils, basophils and eosinophils) and dendritic cells (DC). The role of myeloid cells has been broadly described both in physiological and in pathological conditions. All tissues or organs are equipped with resident myeloid cells, such as parenchymal microglia in the brain, which contribute to maintaining homeostasis. Moreover, in case of infection or tissue damage, other myeloid cells such as monocytes or granulocytes (especially neutrophils) can be recruited from the circulation, at first to promote inflammation and later to participate in repair and regeneration. This review aims to address the regulatory roles of myeloid cells in inflammatory diseases of the central nervous system (CNS), with a particular focus on recent work showing induction of suppressive function via stimulation of innate signalling in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE).


Asunto(s)
Sistema Nervioso Central/inmunología , Células Dendríticas/inmunología , Granulocitos/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Células Mieloides/inmunología , Animales , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Humanos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología
3.
Front Oncol ; 13: 1280891, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090485

RESUMEN

Background: Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, highlighting the pressing need to address its development. Inflammation plays a crucial role in augmenting the risk of CRC and actively contributes to all stages of tumorigenesis. Consequently, targeting early inflammatory responses in the intestinal tract to restore homeostasis holds significant potential for preventing and treating CRC. Fibrinogen C domain-containing 1 (FIBCD1), a chitin-binding transmembrane protein predominantly found on human intestinal epithelial cells (IECs), has garnered attention in previous research for its ability to effectively suppress inflammatory responses and promote tissue homeostasis at mucosal barriers. Methods: In this study, we investigated the role of FIBCD1 in CRC development using transgenic mice that mimic human expression of FIBCD1 at the intestinal mucosal barrier. To model aspects of CRC, we employed the azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model. Additionally, we examined the expression pattern of FIBCD1 in surgical specimens obtained from human CRC patients by immunohistochemical methods. By accessing public data repositories, we further evaluated FIBCD1 expression in colon adenocarcinoma and explored survival outcomes associated with FIBCD1 expression. Results: Here, we demonstrate that FIBCD1 substantially impacts CRC development by significantly reducing intestinal inflammation and suppressing colorectal tumorigenesis in mice. Furthermore, we identify a soluble variant of FIBCD1 that is significantly increased in feces during acute inflammation. Finally, we demonstrate increased expression of FIBCD1 by immunohistochemistry in human CRC specimens at more developed tumor stages. These results are further supported by bioinformatic analyses of publicly available repositories, indicating increased FIBCD1 expression in tumor tissues, where higher expression is associated with unfavorable prognosis. Conclusion: Collectively, these findings suggest that FIBCD1 influences early inflammatory responses in the AOM/DSS model, leading to a reduction in tumor size and burden. The increased expression of FIBCD1 in human CRC samples raises intriguing questions regarding its role in CRC, positioning it as a compelling candidate and novel molecular target for future research.

4.
Biology (Basel) ; 11(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36552252

RESUMEN

The human gastrointestinal microbiota contains a diverse consortium of microbes, including bacteria, protozoa, viruses, and fungi. Through millennia of co-evolution, the host-microbiota interactions have shaped the immune system to both tolerate and maintain the symbiotic relationship with commensal microbiota, while exerting protective responses against invading pathogens. Microbiome research is dominated by studies describing the impact of prokaryotic bacteria on gut immunity with a limited understanding of their relationship with other integral microbiota constituents. However, converging evidence shows that eukaryotic organisms, such as commensal protozoa, can play an important role in modulating intestinal immune responses as well as influencing the overall health of the host. The presence of several protozoa species has recently been shown to be a common occurrence in healthy populations worldwide, suggesting that many of these are commensals rather than invading pathogens. This review aims to discuss the most recent, conflicting findings regarding the role of intestinal protozoa in gut homeostasis, interactions between intestinal protozoa and the bacterial microbiota, as well as potential immunological consequences of protozoa colonization.

5.
Front Neurosci ; 15: 682451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149350

RESUMEN

The pathological hallmark of multiple sclerosis (MS) is the formation of multifocal demyelinating lesions in the central nervous system (CNS). Stimulation of innate receptors has been shown to suppress experimental autoimmune encephalomyelitis (EAE), an MS-like disease in mice. Specifically, targeting Toll-like receptor 9 (TLR9) and NOD-like receptor 2 (NOD2) significantly reduced disease severity. In the present work we have developed a novel focal EAE model to further study the effect of innate signaling on demyelinating pathology. Focal lesions were induced by stereotactic needle insertion into the corpus callosum (CC) of mice previously immunized for EAE. This resulted in focal pathology characterized by infiltration and demyelination in the CC. We find that intrathecal delivery of MIS416, a TLR9 and NOD2 bispecific innate ligand, into the cerebrospinal fluid reduced focal lesions in the CC. This was associated with upregulation of type I and II interferons, interleukin-10, arginase-1, CCL-2 and CXCL-10. Analysis of draining cervical lymph nodes showed upregulation of type II interferons and interleukin 10. Moreover, intrathecal MIS416 altered the composition of early CNS infiltrates, increasing proportions of myeloid and NK cells and reducing T cells at the lesion site. This study contributes to an increased understanding of how innate immune responses can play a protective role, which in turn may lead to additional therapeutic strategies for the prevention and treatment of demyelinating pathologies.

6.
J Neuroimmunol ; 358: 577657, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34315069

RESUMEN

Astrocyte pathology is a feature of neuromyelitis optica spectrum disorder (NMOSD) pathology. Recently mitochondrial dysfunction and metabolic changes were suggested to play a role in NMOSD. To elucidate the role of mitochondrial dysfunction, astrocyte pathology was induced in C57BL/6 J female mice by intracerebral injection of aquaporin-4-immunoglobulin G from an NMOSD patient, together with complement. Etomoxir has been shown to cause mitochondrial dysfunction. Etomoxir was delivered to the central nervous system and resulted in decreased astrocyte pathology. The ameliorating effect was associated with increases in different acylcarnitines and amino acids. This suggests that mitochondria may be a therapeutic target in NMOSD.


Asunto(s)
Astrocitos/inmunología , Astrocitos/patología , Autoanticuerpos/inmunología , Compuestos Epoxi/administración & dosificación , Mitocondrias/inmunología , Animales , Astrocitos/efectos de los fármacos , Femenino , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Neuromielitis Óptica/inmunología
7.
Mult Scler Relat Disord ; 53: 103033, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34090131

RESUMEN

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is an antibody-mediated autoimmune inflammatory disease of the central nervous system (CNS), resulting in primary astrocytopathy. We have previously shown that Angiotensin AT2-receptor (AT2R) stimulation with the specific agonist Compound 21 (C21) attenuated NMOSD-like pathology. Recent studies have proposed that the mechanism behind protective effects of AT2R includes induction of brain derived neurotrophic factor (BDNF). Astrocytes are a major cellular source of BDNF. In this study we used mice with conditional BDNF deficiency in astrocytes (GfapF) to examine the involvement of astrocyte-derived BDNF in NMOSD-like pathology and in mediating the protective effect of AT2R stimulation. METHODS: Anti-aquaporin-4 IgG (AQP4-IgG) from an NMOSD patient and human complement (C) were co-injected intrastriatally to GfapF and wildtype littermate BDNFfl/fl mice (WT), together with either C21 or vehicle at day 0, followed by intrathecal injection of C21 or vehicle at day 2 and tissue collection at day 4. RESULTS: Intracerebral/intrathecal injection of C21, alone or in combination with AQP4-IgG + C, induced BDNF expression in WT mice. Injection of AQP4-IgG + C induced NMOSD-like pathology, including loss of AQP4 and GFAP. There was no difference in the severity of pathological changes between GfapF and WT mice. C21 treatment significantly and equally ameliorated NMOSD-like pathology in both WT and GfapF mice. CONCLUSION: Our findings indicate that astrocyte-derived BDNF neither reduces the severity of NMOSD-like pathology nor is it necessary for the protective effect of AT2R stimulation in NMOSD-like pathology.


Asunto(s)
Neuromielitis Óptica , Angiotensinas , Animales , Acuaporina 4/genética , Astrocitos , Autoanticuerpos , Factor Neurotrófico Derivado del Encéfalo , Humanos , Ratones , Neuromielitis Óptica/tratamiento farmacológico , Receptor de Angiotensina Tipo 2/genética
8.
Front Neurosci ; 15: 685645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211367

RESUMEN

Innate receptors, including Toll like receptors (TLRs), are implicated in pathogenesis of CNS inflammatory diseases such as multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). TLR response to pathogens or endogenous signals includes production of immunoregulatory mediators. One of these, interferon (IFN)ß, a Type I IFN, plays a protective role in MS and EAE. We have previously shown that intrathecal administration of selected TLR ligands induced IFNß and infiltration of blood-derived myeloid cells into the central nervous system (CNS), and suppressed EAE in mice. We have now extended these studies to evaluate a potential therapeutic role for CNS-endogenous TLR7 and TLR9. Intrathecal application of Imiquimod (TLR7 ligand) or CpG oligonucleotide (TLR9 ligand) into CNS of otherwise unmanipulated mice induced IFNß expression, with greater magnitude in response to CpG. CD45+ cells in the meninges were identified as source of IFNß. Intrathecal CpG induced infiltration of monocytes, neutrophils, CD4+ T cells and NK cells whereas Imiquimod did not recruit blood-derived CD45+ cells. CpG, but not Imiquimod, had a beneficial effect on EAE, when given at time of disease onset. This therapeutic effect of CpG on EAE was not seen in mice lacking the Type I IFN receptor. In mice with EAE treated with CpG, the proportion of monocytes was significantly increased in the CNS. Infiltrating cells were predominantly localized to spinal cord meninges and demyelination was significantly reduced compared to non-treated mice with EAE. Our findings show that TLR7 and TLR9 signaling induce distinct inflammatory responses in the CNS with different outcome in EAE and point to recruitment of blood-derived cells and IFNß induction as possible mechanistic links between TLR9 stimulation and amelioration of EAE. The protective role of TLR9 signaling in the CNS may have application in treatment of diseases such as MS.

9.
Front Oncol ; 11: 635005, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833993

RESUMEN

Introduction: Chemotherapy-induced gastrointestinal toxicity (CIGT) is a frequent, severe and dose-limiting side effect. Few treatments have proven effective for CIGT. CIGT is characterized by activation of the nuclear factor kappa B pathway which, leads to upregulation of proinflammatory cytokines. The innate immune protein peptidoglycan recognition peptide 2 (PGLYRP2) binds to and hydrolyzes microbial peptidoglycan. Expression of PGLYRP2 is upregulated in the intestine of chemotherapy-treated piglets. In this experimental study, we investigated the role of Pglyrp2 in the development and severity of murine CIGT. Methods: Pglyrp2 wildtype and Pglyrp2 knockout mice received intraperitoneal injections of chemotherapy (Doxorubicin 20 mg/kg) to induce CIGT. Weight was monitored daily, and animals were euthanized after 2 or 7 days. Expression of proinflammatory cytokines in the jejunum was measured by quantitative real-time polymerase-chain reaction and enzyme-linked immunosorbent assay. Villus height, crypt depth, and histologic inflammation were evaluated on haematoxylin and eosin stained tissue specimens. Results: Chemotherapeutic treatment induced weight loss (p < 0.05), shortening of the small intestine (p < 0.05), elongation of villus height (p < 0.05), increased crypt depth (p < 0.05), and led to elevated mRNA levels of II1ß (p < 0.05), II6 (p < 0.05), and Tnf (p < 0.001) at day 2. Protein levels of IL1ß, IL6, and TNFα did not change after exposure to chemotherapy. Doxorubicin treated wildtype mice had a more pronounced weight loss compared to knockout mice from day 3 to day 7 (D3-D6: p < 0.05 and D7: p < 0.01). No other phenotypic differences were detected. Conclusion: Pglyrp2 aggravates chemotherapy-induced weight loss but does not induce a specific pattern of inflammation and morphological changes in the small intestine.

10.
Front Cardiovasc Med ; 8: 764337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805319

RESUMEN

Objective: Abdominal aortic aneurysm (AAA) is a common age-related vascular disease characterized by progressive weakening and dilatation of the aortic wall. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix (ECM) protein involved in the induction of vascular remodeling. This study aimed to investigate if MFAP4 facilitates the development of AAA and characterize the underlying MFAP4-mediated mechanisms. Approach and Results: Double apolipoprotein E- and Mfap4-deficient (ApoE -/- Mfap4 -/-) and control apolipoprotein E-deficient (ApoE -/-) mice were infused subcutaneously with angiotensin II (Ang II) for 28 days. Mfap4 expression was localized within the adventitial and medial layers and was upregulated after Ang II treatment. While Ang II-induced blood pressure increase was independent of Mfap4 genotype, ApoE -/- Mfap4 -/- mice exhibited significantly lower AAA incidence and reduced maximal aortic diameter compared to ApoE -/- littermates. The ApoE -/- Mfap4 -/- AAAs were further characterized by reduced macrophage infiltration, matrix metalloproteinase (MMP)-2 and MMP-9 activity, proliferative activity, collagen content, and elastic membrane disruption. MFAP4 deficiency also attenuated activation of integrin- and TGF-ß-related signaling within the adventitial layer of AAA tissues. Finally, MFAP4 stimulation promoted human monocyte migration and significantly upregulated MMP-9 activity in macrophage-like THP-1 cells. Conclusion: This study demonstrates that MFAP4 induces macrophage-rich inflammation, MMP activity, and maladaptive remodeling of the ECM within the vessel wall, leading to an acceleration of AAA development and progression. Collectively, our findings suggest that MFAP4 is an essential aggravator of AAA pathology that acts through regulation of monocyte influx and MMP production.

11.
Front Immunol ; 10: 2214, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616417

RESUMEN

Immaturity of the immune system contributes to poor vaccine responses in early life. Germinal center (GC) activation is limited due to poorly developed follicular dendritic cells (FDC), causing generation of few antibody-secreting cells (ASCs) with limited survival and transient antibody responses. Herein, we compared the potential of five adjuvants, namely LT-K63, mmCT, MF59, IC31, and alum to overcome limitations of the neonatal immune system and to enhance and prolong responses of neonatal mice to a pneumococcal conjugate vaccine Pnc1-TT. The adjuvants LT-K63, mmCT, MF59, and IC31 significantly enhanced GC formation and FDC maturation in neonatal mice when co-administered with Pnc1-TT. This enhanced GC induction correlated with significantly enhanced vaccine-specific ASCs by LT-K63, mmCT, and MF59 in spleen 14 days after immunization. Furthermore, mmCT, MF59, and IC31 prolonged the induction of vaccine-specific ASCs in spleen and increased their persistence in bone marrow up to 9 weeks after immunization, as previously shown for LT-K63. Accordingly, serum Abs persisted above protective levels against pneumococcal bacteremia and pneumonia. In contrast, alum only enhanced the primary induction of vaccine-specific IgG Abs, which was transient. Our comparative study demonstrated that, in contrast to alum, LT-K63, mmCT, MF59, and IC31 can overcome limitations of the neonatal immune system and enhance both induction and persistence of protective immune response when administered with Pnc1-TT. These adjuvants are promising candidates for early life vaccination.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Células Productoras de Anticuerpos/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Centro Germinal/efectos de los fármacos , Bazo/efectos de los fármacos , Compuestos de Alumbre/farmacología , Animales , Animales Recién Nacidos , Anticuerpos Antibacterianos/sangre , Toxinas Bacterianas/farmacología , Médula Ósea/inmunología , Toxina del Cólera/farmacología , Combinación de Medicamentos , Enterotoxinas/farmacología , Proteínas de Escherichia coli/farmacología , Inmunoglobulina G/sangre , Ratones , Oligodesoxirribonucleótidos/farmacología , Oligopéptidos/farmacología , Vacunas Neumococicas/administración & dosificación , Polisorbatos/farmacología , Bazo/inmunología , Escualeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA