Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 13(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38891340

RESUMEN

In plant models such as Arabidopsis thaliana, phosphatidic acid (PA), a key molecule of lipid signaling, was shown not only to be involved in stress responses, but also in plant development and nutrition. In this article, we highlight lipid signaling existing in crop species. Based on open access databases, we update the list of sequences encoding phospholipases D, phosphoinositide-dependent phospholipases C, and diacylglycerol-kinases, enzymes that lead to the production of PA. We show that structural features of these enzymes from model plants are conserved in equivalent proteins from selected crop species. We then present an in-depth discussion of the structural characteristics of these proteins before focusing on PA binding proteins. For the purpose of this article, we consider RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), the most documented PA target proteins. Finally, we present pioneering experiments that show, by different approaches such as monitoring of gene expression, use of pharmacological agents, ectopic over-expression of genes, and the creation of silenced mutants, that lipid signaling plays major roles in crop species. Finally, we present major open questions that require attention since we have only a perception of the peak of the iceberg when it comes to the exciting field of phospholipid signaling in plants.

2.
Data Brief ; 53: 110243, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533111

RESUMEN

The Unfolded Protein Response (UPR) is a retrograde, ER-to-nucleus, signalling pathway which is conserved across kingdoms. In plants, it contributes to development, reproduction, immunity and tolerance to abiotic stress. This RNA sequencing (RNA-seq) dataset was produced from 14-day-old Arabidopsis thaliana seedlings challenged by tunicamycin (Tm), an antibiotic inhibiting Asn-linked glycosylation in the endoplasmic reticulum (ER), causing an ER stress and eventually activating the UPR. Wild-type (WT) and a double mutant deficient for two main actors of the UPR (INOSITOL-REQUIRING ENZYME 1A and INOSITOL-REQUIRING ENZYME 1B) were used as genetic backgrounds in our experimental setup, allowing to distinguish among differentially-expressed genes (DEGs) which ones are dependent on or independent on IRE1s. Also, shoots and roots were harvested separately to determine organ-specific transcriptomic responses to Tm. Library and sequencing were performed using DNBseq™ technology by the Beijing Genomics Institute. Reads were mapped and quantified against the Arabidopsis genome. Differentially-expressed genes were identified using Rflomics upon filtering and normalization by the Trimmed Mean of M-value (TMM) method. While the genotype effect was weak under mock conditions (with a total of 182 DEGs in shoots and 195 DEGs in roots), the tunicamycin effect on each genotype was characterized by several hundred of DEGs in both shoots and roots. Among these genes, 872 and 563 genes were statistically up- and down-regulated in the shoot tissues of the double mutant when compared to those of WT, respectively. In roots of Tm-challenged seedlings, 425 and 439 genes were significantly up- and down-regulated in mutants with respect to WT. We believe that our dataset could be reused for investigating any biological questions linked to ER homeostasis and its role in plant physiology.

3.
Cells ; 10(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063958

RESUMEN

Throughout their life cycle, plants face a tremendous number of environmental and developmental stresses. To respond to these different constraints, they have developed a set of refined intracellular systems including autophagy. This pathway, highly conserved among eukaryotes, is induced by a wide range of biotic and abiotic stresses upon which it mediates the degradation and recycling of cytoplasmic material. Central to autophagy is the formation of highly specialized double membrane vesicles called autophagosomes which select, engulf, and traffic cargo to the lytic vacuole for degradation. The biogenesis of these structures requires a series of membrane remodeling events during which both the quantity and quality of lipids are critical to sustain autophagy activity. This review highlights our knowledge, and raises current questions, regarding the mechanism of autophagy, and its induction and regulation upon environmental stresses with a particular focus on the fundamental contribution of lipids. How autophagy regulates metabolism and the recycling of resources, including lipids, to promote plant acclimation and resistance to stresses is further discussed.


Asunto(s)
Autofagosomas/metabolismo , Autofagia , Metabolismo de los Lípidos , Plantas/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA