RESUMEN
An easy-to-access, near-UV-emitting linearly extended B,N-doped heptacene with high thermal stability is designed and synthesized in good yields. This compound exhibits thermally activated delayed fluorescence (TADF) at ambient temperature from a multiresonant (MR) state and represents a rare example of a non-triangulene-based MR-TADF emitter. At lower temperatures triplet-triplet annihilation dominates. The compound simultaneously possesses narrow, deep-blue emission with CIE coordinates of (0.17, 0.01). While delayed fluorescence results mainly from triplet-triplet annihilation at lower temperatures in THF solution, where aggregates form upon cooling, the TADF mechanism takes over around room temperature in solution when the aggregates dissolve or when the compound is well dispersed in a solid matrix. The potential of our molecular design to trigger TADF in larger acenes is demonstrated through the accurate prediction of ΔEST using correlated wave-function-based calculations. On the basis of these calculations, we predicted dramatically different optoelectronic behavior in terms of both ΔEST and the optical energy gap of two constitutional isomers where only the boron and nitrogen positions change. A comprehensive structural, optoelectronic, and theoretical investigation is presented. In addition, the ability of the achiral molecule to assemble on a Au(111) surface to a highly ordered layer composed of enantiomorphic domains of racemic entities is demonstrated by scanning tunneling microscopy.
RESUMEN
The development of efficient blue donor-acceptor thermally activated delayed fluorescence (TADF) emitters remains a challenge. To enhance the efficiency of TADF-related processes of the emitter, we targeted a molecular design that would introduce a large number of intermediate triplet states between the lowest energy excited triplet (T1) and singlet (S1) excited states. Here, we introduce an oligomer approach using repetitive donor-acceptor units to gradually increase the number of quasi-degenerate states. In our design, benzonitrile (BN) moieties were selected as acceptors that are connected together via the amine donors, acting as bridges to adjacent BN acceptors. To preserve the photoluminescence emission wavelength across the series, we employed a design based on an ortho substitution pattern of the donors about the BN acceptor that induces a highly twisted conformation of the emitters, limiting the conjugation. Via a systematic photophysical study, we show that increasing the oligomer size allows for enhancement of the intersystem crossing and reverse intersystem crossing rates. We attribute the increasing intersystem crossing rate to the increasing number of intermediate triplet states along the series, confirmed by the time-dependent density functional theory. Overall, we report an approach to enhance the efficiency of TADF-related processes without changing the blue photoluminescence color.
RESUMEN
The development of high-performance solution-processed organic light-emitting diodes (OLEDs) remains a challenge. An effective solution, highlighted in this work, is to use highly efficient thermally activated delayed fluorescence (TADF) dendrimers as emitters. Here, the design, synthesis, density functional theory (DFT) modeling, and photophysics of three triazine-based dendrimers, tBuCz2pTRZ, tBuCz2mTRZ, and tBuCz2m2pTRZ, is reported, which resolve the conflicting requirements of achieving simultaneously a small ΔEST and a large oscillator strength by incorporating both meta- and para-connected donor dendrons about a central triazine acceptor. The solution-processed OLED containing a host-free emitting layer exhibits an excellent maximum external quantum efficiency (EQEmax ) of 28.7%, a current efficiency of 98.8 cd A-1 , and a power efficiency of 91.3 lm W-1 . The device emits with an electroluminescence maximum, λEL , of 540 nm and Commission International de l'Éclairage (CIE) color coordinates of (0.37, 0.57). This represents the most efficient host-free solution-processed OLED reported to date. Further optimization directed at improving the charge balance within the device results in an emissive layer containing 30 wt% OXD-7, which leads to an OLED with the similar EQEmax of 28.4% but showing a significantly improved efficiency rolloff where the EQE remains high at 22.7% at a luminance of 500 cd m-2 .
RESUMEN
The potential of dendrimers exhibiting thermally activated delayed fluorescence (TADF) as emitters in solution-processed organic light-emitting diodes (OLEDs) has to date not yet been realized. This in part is due to a poor understanding of the structure-property relationship in dendrimers where reports of detailed photophysical characterization and mechanism studies are lacking. In this report, using absorption and solvatochromic photoluminescence studies in solution, the origin and character of the lowest excited electronic states in dendrimers with multiple dendritic electron-donating moieties connected to a central electron-withdrawing core via a para- or a meta-phenylene bridge is probed. Characterization of host-free OLEDs reveals the superiority of meta-linked dendrimers as compared to the already reported para-analogue. Comparative temperature-dependent time-resolved solid-state photoluminescence measurements and quantum chemical studies explore the effect of the substitution mode on the TADF properties and the reverse intersystem crossing (RISC) mechanism, respectively. For TADF dendrimers with similarly small ∆EST , it is observed that RISC can be enhanced by the regiochemistry of the donor dendrons due to control of the reorganization energies, which is a heretofore unexploited strategy that is distinct from the involvement of intermediate triplet states through a nonadiabatic (vibronic) coupling with the lowest singlet charge transfer state.
RESUMEN
In this work we present a new multi-resonance thermally activated delayed fluorescence (MR-TADF) emitter paradigm, demonstrating that the structure need not require the presence of acceptor atoms. Based on an in silico design, the compound DiICzMes4 possesses a red-shifted emission, enhanced photoluminescence quantum yield, and smaller singlet-triplet energy gap, ΔEST, than the parent indolocarbazole that induces MR-TADF properties. Coupled cluster calculations accurately predict the magnitude of the ΔEST when the optimized singlet and triplet geometries are used. Slow yet optically detectable reverse intersystem crossing contributes to low efficiency in organic light-emitting diodes using DiICzMes4 as the emitter. However, when used as a terminal emitter in combination with a TADF assistant dopant within a hyperfluorescence device architecture, maximum external quantum efficiencies of up to 16.5% were achieved at CIE (0.15, 0.11). This represents one of the bluest hyperfluorescent devices reported to date. Simultaneously, recognising that MR-TADF emitters do not require acceptor atoms reveals an unexplored frontier in materials design, where yet greater performance may yet be discovered.
RESUMEN
Thermally activated delayed fluorescence (TADF) relies on a small energy gap between the emissive singlet and the nonemissive triplet state, obtained by reducing the wave function overlap between donor and acceptor moieties. Efficient emission, however, requires maintaining a good oscillator strength, which is itself based on sufficient overlap of the wave functions between donor and acceptor moieties. We demonstrate an approach to subtly fine-tune the required wave function overlap by employing donor dendrons of changing functionality. We use a carbazolyl-phthalonitrile based donor-acceptor core (2CzPN) as a reference emitter and progressively localize the hole density through substitution at the 3,6-positions of the carbazole donors (Cz) with further carbazole, (4-tert-butylphenyl)amine (tBuDPA), and phenoxazine (PXZ). Using detailed photoluminescence studies, complemented with density functional theory (DFT) calculations, we show that this approach permits a gradual decrease of the singlet-triplet gap, ΔEST, from 300 to around 10 meV in toluene, yet we also demonstrate why a small ΔEST alone is not enough. While sufficient oscillator strength is maintained with the Cz- and tBuDPA-based donor dendrons, this is not the case for the PXZ-based donor dendron, where the wave function overlap is reduced too strongly. Overall, we find the donor dendron extension approach allows successful fine-tuning of the emitter photoluminescence properties.
RESUMEN
The synthesis of stable blue TADF emitters and the corresponding matrix materials is one of the biggest challenges in the development of novel OLED materials. We present six bipolar host materials based on triazine as an acceptor and two types of donors, namely, carbazole, and acridine. Using a tool box approach, the chemical structure of the materials is changed in a systematic way. Both the carbazole and acridine donor are connected to the triazine acceptor via a para- or a meta-linked phenyl ring or are linked directly to each other. The photophysics of the materials has been investigated in detail by absorption-, fluorescence-, and phosphorescence spectroscopy in solution. In addition, a number of DFT calculations have been made which result in a deeper understanding of the photophysics. The presence of a phenyl bridge between donor and acceptor cores leads to a considerable decrease of the triplet energy due to extension of the overlap electron and hole orbitals over the triazine-phenyl core of the molecule. This decrease is more pronounced for the para-phenylene than for the meta-phenylene linker. Only direct connection of the donor group to the triazine core provides a high energy of the triplet state of 2.97 eV for the carbazole derivative CTRZ and 3.07 eV for the acridine ATRZ. This is a major requirement for the use of the materials as a host for blue TADF emitters.