Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 584(7819): E4, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32690939

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 566(7745): 518-522, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30742073

RESUMEN

The major breakthroughs in understanding of topological materials over the past decade were all triggered by the discovery of the Z2-type topological insulator-a type of material that is insulating in its interior but allows electron flow on its surface. In three dimensions, a topological insulator is classified as either 'strong' or 'weak'1,2, and experimental confirmations of the strong topological insulator rapidly followed theoretical predictions3-5. By contrast, the weak topological insulator (WTI) has so far eluded experimental verification, because the topological surface states emerge only on particular side surfaces, which are typically undetectable in real three-dimensional crystals6-10. Here we provide experimental evidence for the WTI state in a bismuth iodide, ß-Bi4I4. Notably, the crystal has naturally cleavable top and side planes-stacked via van der Waals forces-which have long been desirable for the experimental realization of the WTI state11,12. As a definitive signature of this state, we find a quasi-one-dimensional Dirac topological surface state at the side surface (the (100) plane), while the top surface (the (001) plane) is topologically dark with an absence of topological surface states. We also find that a crystal transition from the ß-phase to the α-phase drives a topological phase transition from a nontrivial WTI to a normal insulator at roughly room temperature. The weak topological phase-viewed as quantum spin Hall insulators stacked three-dimensionally13,14-will lay a foundation for technology that benefits from highly directional, dense spin currents that are protected against backscattering.

3.
Phys Rev Lett ; 131(4): 046401, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37566843

RESUMEN

The recent observation of correlated phases in transition metal dichalcogenide moiré systems at integer and fractional filling promises new insight into metal-insulator transitions and the unusual states of matter that can emerge near such transitions. Here, we combine real- and momentum-space mapping techniques to study moiré superlattice effects in 57.4° twisted WSe_{2} (tWSe_{2}). Our data reveal a split-off flat band that derives from the monolayer Γ states. Using advanced data analysis, we directly quantify the moiré potential from our data. We further demonstrate that the global valence band maximum in tWSe_{2} is close in energy to this flat band but derives from the monolayer K states which show weaker superlattice effects. These results constrain theoretical models and open the perspective that Γ-valley flat bands might be involved in the correlated physics of twisted WSe_{2}.

4.
Phys Rev Lett ; 120(10): 106401, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29570327

RESUMEN

van der Waals heterostructures (VDWHs) exhibit rich properties and thus has potential for applications, and charge transfer between different layers in a heterostructure often dominates its properties and device performance. It is thus critical to reveal and understand the charge transfer effects in VDWHs, for which electronic structure measurements have proven to be effective. Using angle-resolved photoemission spectroscopy, we studied the electronic structures of (PbSe)_{1.16}(TiSe_{2})_{m} (m=1, 2), which are naturally occurring VDWHs, and discovered several striking charge transfer effects. When the thickness of the TiSe_{2} layers is halved from m=2 to m=1, the amount of charge transferred increases unexpectedly by more than 250%. This is accompanied by a dramatic drop in the electron-phonon interaction strength far beyond the prediction by first-principles calculations and, consequently, superconductivity only exists in the m=2 compound with strong electron-phonon interaction, albeit with lower carrier density. Furthermore, we found that the amount of charge transferred in both compounds is nearly halved when warmed from below 10 K to room temperature, due to the different thermal expansion coefficients of the constituent layers of these misfit compounds. These unprecedentedly large charge transfer effects might widely exist in VDWHs composed of metal-semiconductor contacts; thus, our results provide important insights for further understanding and applications of VDWHs.

5.
Phys Rev Lett ; 120(6): 066403, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29481263

RESUMEN

A key issue in heavy fermion research is how subtle changes in the hybridization between the 4f (5f) and conduction electrons can result in fundamentally different ground states. CeRhIn_{5} stands out as a particularly notable example: when replacing Rh with either Co or Ir, antiferromagnetism gives way to superconductivity. In this photoemission study of CeRhIn_{5}, we demonstrate that the use of resonant angle-resolved photoemission spectroscopy with polarized light allows us to extract detailed information on the 4f crystal field states and details on the 4f and conduction electron hybridization, which together determine the ground state. We directly observe weakly dispersive Kondo resonances of f electrons and identify two of the three Ce 4f_{5/2}^{1} crystal-electric-field levels and band-dependent hybridization, which signals that the hybridization occurs primarily between the Ce 4f states in the CeIn_{3} layer and two more three-dimensional bands composed of the Rh 4d and In 5p orbitals in the RhIn_{2} layer. Our results allow us to connect the properties observed at elevated temperatures with the unusual low-temperature properties of this enigmatic heavy fermion compound.

6.
Phys Rev Lett ; 121(11): 117002, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30265111

RESUMEN

The mechanism of high superconducting transition temperatures (T_{c}) in bismuthates remains under debate despite more than 30 years of extensive research. Our angle-resolved photoemission spectroscopy studies on Ba_{0.51}K_{0.49}BiO_{3} reveal an unexpectedly 34% larger bandwidth than in conventional density functional theory calculations. This can be reproduced by calculations that fully account for long-range Coulomb interactions-the first direct demonstration of bandwidth expansion due to the Fock exchange term, a long-accepted and yet uncorroborated fundamental effect in many body physics.Furthermore, we observe an isotropic superconducting gap with 2Δ_{0}/k_{B}T_{c}=3.51±0.05, and strong electron-phonon interactions with a coupling constant λ∼1.3±0.2. These findings solve a long-standing mystery-Ba_{0.51}K_{0.49}BiO_{3} is an extraordinary Bardeen-Cooper-Schrieffer superconductor, where long-range Coulomb interactions expand the bandwidth, enhance electron-phonon coupling, and generate the high T_{c}. Such effects will also be critical for finding new superconductors.

7.
Nat Mater ; 13(7): 677-81, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24859642

RESUMEN

Three-dimensional (3D) topological Dirac semimetals (TDSs) are a recently proposed state of quantum matter that have attracted increasing attention in physics and materials science. A 3D TDS is not only a bulk analogue of graphene; it also exhibits non-trivial topology in its electronic structure that shares similarities with topological insulators. Moreover, a TDS can potentially be driven into other exotic phases (such as Weyl semimetals, axion insulators and topological superconductors), making it a unique parent compound for the study of these states and the phase transitions between them. Here, by performing angle-resolved photoemission spectroscopy, we directly observe a pair of 3D Dirac fermions in Cd3As2, proving that it is a model 3D TDS. Compared with other 3D TDSs, for example, ß-cristobalite BiO2 (ref. 3) and Na3Bi (refs 4, 5), Cd3As2 is stable and has much higher Fermi velocities. Furthermore, by in situ doping we have been able to tune its Fermi energy, making it a flexible platform for exploring exotic physical phenomena.

8.
Phys Rev Lett ; 115(16): 166601, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26550888

RESUMEN

We report the detailed electronic structure of WTe2 by high resolution angle-resolved photoemission spectroscopy. We resolved a rather complicated Fermi surface of WTe2. Specifically, there are in total nine Fermi pockets, including one hole pocket at the Brillouin zone center Γ, and two hole pockets and two electron pockets on each side of Γ along the Γ-X direction. Remarkably, we have observed circular dichroism in our photoemission spectra, which suggests that the orbital angular momentum exhibits a rich texture at various sections of the Fermi surface. This is further confirmed by our density-functional-theory calculations, where the spin texture is qualitatively reproduced as the conjugate consequence of spin-orbital coupling. Since the spin texture would forbid backscatterings that are directly involved in the resistivity, our data suggest that the spin-orbit coupling and the related spin and orbital angular momentum textures may play an important role in the anomalously large magnetoresistance of WTe2. Furthermore, the large differences among spin textures calculated for magnetic fields along the in-plane and out-of-plane directions also provide a natural explanation of the large field-direction dependence on the magnetoresistance.

9.
Nano Lett ; 11(12): 5401-7, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22077830

RESUMEN

A novel strategy for efficient growth of nitrogen-doped graphene (N-graphene) on a large scale from s-triazine molecules is presented. The growth process has been unveiled in situ using time-dependent photoemission. It has been established that a postannealing of N-graphene after gold intercalation causes a conversion of the N environment from pyridinic to graphitic, allowing to obtain more than 80% of all embedded nitrogen in graphitic form, which is essential for the electron doping in graphene. A band gap, a doping level of 300 meV, and a charge-carrier concentration of ∼8×10(12) electrons per cm2, induced by 0.4 atom % of graphitic nitrogen, have been detected by angle-resolved photoemission spectroscopy, which offers great promise for implementation of this system in next generation electronic devices.

10.
Nat Commun ; 13(1): 6560, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323685

RESUMEN

The interactions between electrons and antiferromagnetic magnons (AFMMs) are important for a large class of correlated materials. For example, they are the most plausible pairing glues in high-temperature superconductors, such as cuprates and iron-based superconductors. However, unlike electron-phonon interactions (EPIs), clear-cut observations regarding how electron-AFMM interactions (EAIs) affect the band structure are still lacking. Consequently, critical information on the EAIs, such as its strength and doping dependence, remains elusive. Here we directly observe that EAIs induce a kink structure in the band dispersion of Ba1-xKxMn2As2, and subsequently unveil several key characteristics of EAIs. We found that the coupling constant of EAIs can be as large as 5.4, and it shows strong doping dependence and temperature dependence, all in stark contrast to the behaviors of EPIs. The colossal renormalization of electron bands by EAIs enhances the density of states at Fermi energy, which is likely driving the emergent ferromagnetic state in Ba1-xKxMn2As2 through a Stoner-like mechanism with mixed itinerant-local character. Our results expand the current knowledge of EAIs, which may facilitate the further understanding of many correlated materials where EAIs play a critical role.

11.
Science ; 365(6459): 1282-1285, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31604236

RESUMEN

Weyl semimetals are crystalline solids that host emergent relativistic Weyl fermions and have characteristic surface Fermi-arcs in their electronic structure. Weyl semimetals with broken time reversal symmetry are difficult to identify unambiguously. In this work, using angle-resolved photoemission spectroscopy, we visualized the electronic structure of the ferromagnetic crystal Co3Sn2S2 and discovered its characteristic surface Fermi-arcs and linear bulk band dispersions across the Weyl points. These results establish Co3Sn2S2 as a magnetic Weyl semimetal that may serve as a platform for realizing phenomena such as chiral magnetic effects, unusually large anomalous Hall effect and quantum anomalous Hall effect.

12.
Nat Commun ; 9(1): 4535, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382088

RESUMEN

Pressure plays a key role in the study of quantum materials. Its application in angle resolved photoemission (ARPES) studies, however, has so far been limited. Here, we report the evolution of the k-space electronic structure of bulk Ca2RuO4, lightly doped with Pr, under uniaxial strain. Using ultrathin plate-like crystals, we achieve uniaxial strain levels up to -4.1%, sufficient to suppress the insulating Mott phase and access the previously unexplored electronic structure of the metallic state at low temperature. ARPES experiments performed while tuning the uniaxial strain reveal that metallicity emerges from a marked redistribution of charge within the Ru t2g shell, accompanied by a sudden collapse of the spectral weight in the lower Hubbard band and the emergence of a well-defined Fermi surface which is devoid of pseudogaps. Our results highlight the profound roles of lattice energetics and of the multiorbital nature of Ca2RuO4 in this archetypal Mott transition and open new perspectives for spectroscopic measurements.

13.
Nat Commun ; 9(1): 972, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511188

RESUMEN

The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates) materials remains heavily debated. Effective low-energy single-band models of the copper-oxygen orbitals are widely used because there exists no strong experimental evidence supporting multi-band structures. Here, we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital ([Formula: see text] and [Formula: see text]) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(6 Pt 1): 061703, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18233857

RESUMEN

Soft x-ray spectromicroscopy has been used to investigate the degree of the molecular alignment of sulfonated benzo[de]benzo[4.5]imidazo[2,1-a]isoquinoline[7,1], a lyotropic chromonic liquid crystal (LCLC). LCLC thin films cast from concentrated aqua solution (20%wt.) , aligned by shear flow and dried, show strong linear dichroism in their C-, N-, O-, S- K edge near edge x-ray spectra (NEXAFS). The carbon K edge has been used for quantitative evaluation of the orientational texture of the films at a submicron spatial scale. This has verified there is predominantly in-plane alignment of the LC director. To highlight the role of hydrophobic-hydrophilic interactions, two stereoisomers of the same dye has been synthesized with different positioning of terminal sulfonate groups, in the form of a mixture of isomers with sulfonate groups in 2,10 and 2,11 positions (Y104 compound) and in a 5,10-disulfo arrangement (Y105). Both compounds develop characteristic herringbone-type texture with similar domain sizes. Polarized optical microscopy and higher resolution x-ray microscopy show sinusoidal-like undulations of the molecular director, with occasional crisscross appearance. Such behavior is found to be consistent with earlier observation of striations, characteristic of the columnar phase. The drastic difference in the degree of undulation ( +/-15 degrees in Y104 and +/-7 degrees in Y105 films) and long period of undulation (approaching the film thickness) requires further analysis. It was also found that the degree of in-plane order within domains changes from 0.8 for Y104 to >0.9 in Y105 films.

15.
Rev Sci Instrum ; 88(1): 013106, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28147670

RESUMEN

A synchrotron radiation beamline in the photon energy range of 18-240 eV and an electron spectroscopy end station have been constructed at the 3 GeV Diamond Light Source storage ring. The instrument features a variable polarisation undulator, a high resolution monochromator, a re-focussing system to form a beam spot of 50 × 50 µm2, and an end station for angle-resolved photoelectron spectroscopy (ARPES) including a 6-degrees-of-freedom cryogenic sample manipulator. The beamline design and its performance allow for a highly productive and precise use of the ARPES technique at an energy resolution of 10-15 meV for fast k-space mapping studies with a photon flux up to 2 ⋅ 1013 ph/s and well below 3 meV for high resolution spectra.

16.
Sci Rep ; 6: 24254, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27052006

RESUMEN

Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated.

17.
J Phys Chem B ; 109(28): 13649-55, 2005 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16852710

RESUMEN

The formation conditions, morphology, and reactivity of thin oxide films, grown on a Rh(110) surface in the ambient of atomic or molecular oxygen, have been studied by means of laterally resolved core level spectroscopy, scanning tunneling microscopy and low energy electron diffraction. Exposures of Rh(110) to atomic oxygen lead to subsurface incorporation of oxygen even at room temperature and facile formation of an ordered, laterally uniform surface oxide at approximately 520 K, with a quasi-hexagonal structure and stoichiometry close to that of RhO(2). In the intermediate oxidation stages, the surface oxide coexists with areas of high coverage adsorption phases. After a long induction period, the reduction of the Rh oxide film with H(2) is very rapid and independent of the coexisting adsorption phases. The growth of the oxide film by exposure of a Rh(110) surface to molecular oxygen requires higher pressures and temperatures. The important role of the O(2) dissociation step in the oxidation process is reflected by the complex morphology of the oxide films grown in O(2) ambient, consisting of microscopic patches of different Rh and oxygen atomic density.

18.
Nat Commun ; 1: 105, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-21045823

RESUMEN

V(2)O(3) is the prototype system for the Mott transition, one of the most fundamental phenomena of electronic correlation. Temperature, doping or pressure induce a metal-to-insulator transition (MIT) between a paramagnetic metal (PM) and a paramagnetic insulator. This or related MITs have a high technological potential, among others, for intelligent windows and field effect transistors. However the spatial scale on which such transitions develop is not known in spite of their importance for research and applications. Here we unveil for the first time the MIT in Cr-doped V(2)O(3) with submicron lateral resolution: with decreasing temperature, microscopic domains become metallic and coexist with an insulating background. This explains why the associated PM phase is actually a poor metal. The phase separation can be associated with a thermodynamic instability near the transition. This instability is reduced by pressure, that promotes a genuine Mott transition to an eventually homogeneous metallic state.

19.
Phys Chem Chem Phys ; 9(27): 3648-57, 2007 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-17612729

RESUMEN

One of the prerequisites for the detailed understanding of heterogeneous catalysis is the identification of the dynamic response of the catalyst surface under variable reaction conditions. The present study of methanol oxidation on different model Ru pre-catalysts, performed approaching the realistic catalytic reaction conditions, provides direct evidence of the significant effect of reactants' chemical potentials and temperature on the catalyst surface composition and the corresponding catalytic activity and selectivity. The experiments were carried out for three regimes of oxygen potentials in the 10(-1) mbar pressure range, combining in situ analysis of the catalyst surface by synchrotron-based photoelectron core level spectroscopy with simultaneous monitoring of the products released in the gas phase by mass spectroscopy. Metallic Ru with adsorbed oxygen and transient 'surface oxide', RuO(x), with varying x have been identified as the catalytically active states under specific reaction conditions, favouring partial or full oxidation pathways. It has been shown that the composition of catalytically active steady states, exhibiting different activity and selectivity, evolves under the reaction conditions, independent of the crystallographic orientation and the initial pre-catalyst chemical state, metallic Ru or RuO(2).

20.
J Chem Phys ; 125(9): 094701, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16965099

RESUMEN

The initial oxidation of the Rh(110) surface was studied by scanning tunneling microscopy, core level spectroscopy, and density functional theory. The experiments were carried out exposing the Rh(110) surface to molecular or atomic oxygen at temperatures in the 500-700 K range. In molecular oxygen ambient, the oxidation terminates at oxygen coverage close to a monolayer with the formation of alternating islands of the (10x2) one-dimensional surface oxide and (2x1)p2mg adsorption phases. The use of atomic oxygen facilitates further oxidation until a structure with a c(2x4) periodicity develops. The experimental and theoretical results reveal that the c(2x4) structure is a "surface oxide" very similar to the hexagonal O-Rh-O trilayer structures formed on the Rh(111) and Rh(100) substrates. Some of the experimentally found adsorption phases appear unstable in the phase diagram predicted by thermodynamics, which might reflect kinetic hindrance. The structural details, core level spectra, and stability of the surface oxides formed on the three basal planes are compared with those of the bulk RhO2 and Rh2O3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA