Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Strength Cond Res ; 29 Suppl 11: S216-20, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26506191

RESUMEN

The National Strength and Conditioning Association's tactical strength and conditioning program sponsored the second Blue Ribbon Panel on military physical readiness: military physical performance testing, April 18-19, 2013, Norfolk, VA. This meeting brought together a total of 20 subject matter experts (SMEs) from the U.S. Air Force, Army, Marine Corps, Navy, and academia representing practitioners, operators, researchers, and policy advisors to discuss the current state of physical performance testing across the Armed Services. The SME panel initially rated 9 common military tasks (jumping over obstacles, moving with agility, carrying heavy loads, dragging heavy loads, running long distances, moving quickly over short distances, climbing over obstacles, lifting heavy objects, loading equipment) by the degree to which health-related fitness components (e.g., aerobic fitness, muscular strength, muscular endurance, flexibility, and body composition) and skill-related fitness components (e.g., muscular power, agility, balance, coordination, speed, and reaction time) were required to accomplish these tasks. A scale from 1 to 10 (10 being highest) was used. Muscular strength, power, and endurance received the highest rating scores. Panel consensus concluded that (a) selected fitness components (particularly for skill-related fitness components) are currently not being assessed by the military; (b) field-expedient options to measure both health-based and skill-based fitness components are currently available; and


Asunto(s)
Prueba de Esfuerzo , Personal Militar , Aptitud Física/fisiología , Composición Corporal , Prueba de Esfuerzo/métodos , Humanos , Destreza Motora , Fuerza Muscular , Resistencia Física , Equilibrio Postural , Tiempo de Reacción , Estados Unidos
2.
PLoS One ; 10(9): e0139012, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26405804

RESUMEN

Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P) rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total) or were given access only to water (control). Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4)-desaturase (Degs2), an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels achieved by alcohol-preferring P rats as a result of chronic voluntary exposure may have favorable vs. detrimental effects on lipid profiles in this genetic line, consistent with data supporting beneficial cardioprotective and neuroprotective effects of moderate ethanol consumption.


Asunto(s)
Alcoholismo/genética , Ceramidas/metabolismo , Endogamia , Alcoholismo/metabolismo , Animales , Encéfalo/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Miocardio/metabolismo , Ratas , Ratas Wistar , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA