Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 9(12): e1003976, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339791

RESUMEN

Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results in severe impairment of retinal function, abnormal lamination and thickening of the retina mimicking human Leber congenital amaurosis due to loss of CRB1 function. We show that the levels of CRB1 and CRB2 proteins are crucial for mouse retinal development, as they restrain the proliferation of retinal progenitor cells. The lack of these apical proteins results in altered cell cycle progression and increased number of mitotic cells leading to an increased number of late-born cell types such as rod photoreceptors, bipolar and Müller glia cells in postmitotic retinas. Loss of CRB1 and CRB2 in the retina results in dysregulation of target genes for the Notch1 and YAP/Hippo signaling pathways and increased levels of P120-catenin. Loss of CRB1 and CRB2 result in altered progenitor cell cycle distribution with a decrease in number of late progenitors in G1 and an increase in S and G2/M phase. These findings suggest that CRB1 and CRB2 suppress late progenitor pool expansion by regulating multiple proliferative signaling pathways.


Asunto(s)
Sistema Nervioso Central/metabolismo , Amaurosis Congénita de Leber/genética , Proteínas de la Membrana/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Retina/crecimiento & desarrollo , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Humanos , Amaurosis Congénita de Leber/metabolismo , Amaurosis Congénita de Leber/patología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Mitosis/genética , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Retina/citología , Retina/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Células Madre/metabolismo
2.
J Neurosci ; 33(19): 8518-27, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23658188

RESUMEN

During mammalian cortical development, division of progenitor cells occurs at the apical ventricular zone. Apical complex proteins and adherens junctions regulate the different modes of division. Here, we have identified the membrane-associated guanylate kinase protein membrane palmitoylated protein 3 (MPP3) as an essential protein for the maintenance of these complexes. MPP3 localizes at the apical membrane in which it shows partial colocalization with adherens junction proteins and apical proteins. We generated Mpp3 conditional knock-out mice and specifically ablated Mpp3 expression in cortical progenitor cells. Conditional deletion of Mpp3 during cortical development resulted in a gradual loss of the apical complex proteins and disrupted adherens junctions. Although there is cellular disorganization in the ventricular zone, gross morphology of the cortex was unaffected during loss of MPP3. However, in the ventricular zone, removal of MPP3 resulted in randomization of spindle orientation and ectopically localized mitotic cells. Loss of MPP3 in the developing cortex resulted in delayed migration of progenitor cells, whereas the rate of cell division and exit from the cell cycle was not affected. This resulted in defects in cortical stratification and ectopically localized layer II-IV pyramidal neurons and interneurons. These data show that MPP3 is required for maintenance of the apical protein complex and adherens junctions and for stratification and proper migration of neurons during the development of the cortex.


Asunto(s)
Movimiento Celular/genética , Corteza Cerebral , Regulación del Desarrollo de la Expresión Génica/genética , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/embriología , Ventrículos Cerebrales/crecimiento & desarrollo , Embrión de Mamíferos , Guanilato-Quinasas/deficiencia , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/genética
3.
Glia ; 61(10): 1629-44, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23893895

RESUMEN

MPP3 and CRB1 both interact directly with PALS1/MPP5 and through this scaffold protein may form a large protein complex. To investigate the role of MPP3 in the retina we have analyzed conditional mutant Mpp3 knockout mice. Ultrastructural localization studies revealed that MPP3 is predominantly localized in apical villi of Müller glia cells. Retinas lacking MPP3 developed late onset retinal degeneration, with sporadic foci of rosette formation in the central part of the retina. Retinal degeneration in Mpp3 cKO mice was accelerated by exposure to moderate levels of white light. Electroretinography recordings in aging mice under both scotopic and photopic conditions ranged from normal to mildly subnormal, while the magnitude correlated with the strength and extent of morphological alterations. Loss of MPP3 resulted in significant loss of PALS1 at the subapical region adjacent to adherens junctions, and loss of MPP3 in Pals1 conditional knockdown retinas significantly accelerated the onset of retinal degeneration. These data suggest that MPP3 is required for maintaining proper levels of PALS1 at the subapical region, and indicate that the MPP3 gene is a candidate modulator of the Crumbs complex.


Asunto(s)
Adhesión Celular/fisiología , Células Ependimogliales/metabolismo , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo , Nucleósido-Fosfato Quinasa/metabolismo , Células Fotorreceptoras/metabolismo , Animales , Cateninas/metabolismo , Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Electrorretinografía , Células Ependimogliales/ultraestructura , Angiografía con Fluoresceína , Regulación de la Expresión Génica/genética , Guanilato-Quinasas/deficiencia , Luz/efectos adversos , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Inmunoelectrónica , Nectinas , Células Fotorreceptoras/ultraestructura , Retina/citología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Tomografía de Coherencia Óptica , Vías Visuales/metabolismo , Catenina delta
4.
Brain Sci ; 7(5)2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28475113

RESUMEN

The migration of neuronal cells in the developing cerebral cortex is essential for proper development of the brain and brain networks. Disturbances in this process, due to genetic abnormalities or exogenous factors, leads to aberrant brain formation, brain network formation, and brain function. In the last decade, there has been extensive research in the field of neuronal migration. In this review, we describe different methods and approaches to assess and study neuronal migration in the developing cerebral cortex. First, we discuss several genetic methods, techniques and genetic models that have been used to study neuronal migration in the developing cortex. Second, we describe several molecular approaches to study aberrant neuronal migration in the cortex which can be used to elucidate the underlying mechanisms of neuronal migration. Finally, we describe model systems to investigate and assess the potential toxicity effect of prenatal exposure to environmental chemicals on proper brain formation and neuronal migration.

5.
Neurosci Res ; 108: 12-23, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26802325

RESUMEN

The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities.


Asunto(s)
Proteínas de la Membrana/metabolismo , Telencéfalo/anomalías , Proteínas Adaptadoras Transductoras de Señales , Uniones Adherentes/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Proteínas de Ciclo Celular , Diferenciación Celular , División Celular , Corteza Cerebral/anomalías , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Proteínas de la Membrana/genética , Ratones Noqueados , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Nucleósido-Fosfato Quinasa/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo
6.
PLoS One ; 6(11): e28137, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22140524

RESUMEN

The serotonin (5-HT) system densely innervates many brain areas and is important for proper brain development. To specifically ablate the 5-HT system we generated mutant mice carrying a floxed Munc18-1 gene and Cre recombinase driven by the 5-HT-specific serotonin reuptake transporter (SERT) promoter. The majority of mutant mice died within a few days after birth. Immunohistochemical analysis of brains of these mice showed that initially 5-HT neurons are formed and the cortex is innervated with 5-HT projections. From embryonic day 16 onwards, however, 5-HT neurons started to degenerate and at postnatal day 2 hardly any 5-HT projections were present in the cortex. The 5-HT system of mice heterozygous for the floxed Munc18-1 allele was indistinguishable from control mice. These data show that deletion of Munc18-1 in 5-HT neurons results in rapid degeneration of the 5-HT system and suggests that the 5-HT system is important for postnatal survival.


Asunto(s)
Eliminación de Gen , Proteínas Munc18/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas Serotoninérgicas/metabolismo , Neuronas Serotoninérgicas/patología , Serotonina/metabolismo , Animales , Animales Recién Nacidos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Integrasas/metabolismo , Ratones , Núcleos del Rafe/metabolismo , Núcleos del Rafe/patología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
7.
Brain Res ; 1302: 1-9, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19728996

RESUMEN

The serotonin system densely innervates the brain and is implicated in psychopathological processes. Here we studied the effect of serotonin and serotonin pharmacological compounds on the outgrowth of serotonergic projections using organotypic slice co-cultures of hippocampus and dorsal raphe nuclei. Immunocytochemical analysis showed that several serotonergic neurites had grown into the target slice within 7 days in culture, after which the neurite density stabilized. These projections expressed the serotonin-synthesizing enzyme Tryptophan hydroxylase and the serotonin transporter and contained several serotonin-positive varicosities that also accumulated presynaptic markers. Chronic application of a 5-HT(2) agonist reduced the serotonergic neurite density, without effects on survival of serotonergic neurons. In contrast, application of a 5-HT(1A) agonist or the serotonin transporter inhibitor fluoxetine did not affect serotonergic neurite density. We conclude that serotonergic connectivity was reproduced in vitro and that the serotonin neurite density is inhibited by chronic activation of the 5-HT(2) receptor.


Asunto(s)
Hipocampo/embriología , Vías Nerviosas/embriología , Neuritas/efectos de los fármacos , Núcleos del Rafe/embriología , Agonistas del Receptor de Serotonina 5-HT2 , Serotonina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Técnicas de Cocultivo , Esquema de Medicación , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Hipocampo/citología , Hipocampo/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Neuritas/metabolismo , Neuritas/ultraestructura , Técnicas de Cultivo de Órganos , Núcleos del Rafe/citología , Núcleos del Rafe/metabolismo , Receptores de Serotonina 5-HT2/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Agonistas de Receptores de Serotonina/farmacología , Triptófano Hidroxilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA