Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 119(25): 256404, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29303315

RESUMEN

Upon reduction of the film thickness we observe a metal-insulator transition in epitaxially stabilized, spin-orbit-coupled SrIrO_{3} ultrathin films. By comparison of the experimental electronic dispersions with density functional theory at various levels of complexity we identify the leading microscopic mechanisms, i.e., a dimensionality-induced readjustment of octahedral rotations, magnetism, and electronic correlations. The astonishing resemblance of the band structure in the two-dimensional limit to that of bulk Sr_{2}IrO_{4} opens new avenues to unconventional superconductivity by "clean" electron doping through electric field gating.

2.
Phys Rev Lett ; 111(15): 157205, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24160626

RESUMEN

We report on the epitaxial fabrication and electronic properties of a topological phase in strained α-Sn on InSb. The topological surface state forms in the presence of an unusual band order not based on direct spin-orbit coupling, as shown in density functional and GW slab-layer calculations. Angle-resolved photoemission including spin detection probes experimentally how the topological spin-polarized state emerges from the second bulk valence band. Moreover, we demonstrate the precise control of the Fermi level by dopants.

3.
J Phys Condens Matter ; 29(43): 433001, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28915127

RESUMEN

Interacting electrons confined to only one spatial dimension display a wide range of unusual many-body quantum phenomena, ranging from Peierls instabilities to the breakdown of the canonical Fermi liquid paradigm to even unusual spin phenomena. The underlying physics is not only of tremendous fundamental interest, but may also have bearing on device functionality in future micro- and nanoelectronics with lateral extensions reaching the atomic limit. Metallic adatoms deposited on semiconductor surfaces may form self-assembled atomic nanowires, thus representing highly interesting and well-controlled solid-state realizations of such 1D quantum systems. Here we review experimental and theoretical investigations on a few selected prototypical nanowire surface systems, specifically Ge(0 0 1)-Au and Si(hhk)-Au, and the search for 1D quantum states in them. We summarize the current state of research and identify open questions and issues.

4.
Science ; 357(6348): 287-290, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28663438

RESUMEN

Quantum spin Hall materials hold the promise of revolutionary devices with dissipationless spin currents but have required cryogenic temperatures owing to small energy gaps. Here we show theoretically that a room-temperature regime with a large energy gap may be achievable within a paradigm that exploits the atomic spin-orbit coupling. The concept is based on a substrate-supported monolayer of a high-atomic number element and is experimentally realized as a bismuth honeycomb lattice on top of the insulating silicon carbide substrate SiC(0001). Using scanning tunneling spectroscopy, we detect a gap of ~0.8 electron volt and conductive edge states consistent with theory. Our combined theoretical and experimental results demonstrate a concept for a quantum spin Hall wide-gap scenario, where the chemical potential resides in the global system gap, ensuring robust edge conductance.

5.
J Phys Condens Matter ; 25(1): 014007, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23221164

RESUMEN

Temperature-dependent photoemission spectroscopy in Li(0.9)Mo(6)O(17) contributes to evidence for one-dimensional (1D) physics that is unusually robust. Three generic characteristics of the Luttinger liquid are observed: power law behavior of the k-integrated spectral function down to temperatures just above the superconducting transition, k-resolved lineshapes that show holon and spinon features, and quantum critical (QC) scaling in the lineshapes. Departures of the lineshapes and the scaling from expectations in the Tomonaga-Luttinger model can be partially described by a phenomenological momentum broadening that is presented and discussed. The possibility that some form of 1D physics obtains even down to the superconducting transition temperature is assessed.


Asunto(s)
Litio/química , Modelos Químicos , Modelos Moleculares , Espectroscopía de Fotoelectrones/métodos , Reología/métodos , Soluciones/química , Simulación por Computador , Conductividad Térmica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA