RESUMEN
Chronic total occlusions (CTOs) occur in approximately 40% of individuals with symptomatic peripheral arterial disease and are indicative of critical limb ischaemia. Currently, few medical devices can effectively treat CTOs long-term, with amputation often required. This is due to a lack of knowledge of CTO anatomy, making device design and testing difficult. This study is a proof-of-concept study, which aimed to develop a workflow for further characterising the complex multi-material anatomy of CTOs and creating 3D models of CTO components, which may be useful in producing a vascular CTO biomimetic for device testing. Here, we establish such a workflow using samples of atheromatous plaques. We focus on a high-resolution, non-destructive microcomputed tomography (µCT) technique which enables visualisation of occlusion anatomy at a greater resolution than computed tomography angiography (CTA), which is the typical modality used for CTO clinical visualisation. Four arteries (n = 2 superficial femoral; n = 2 popliteal) with evidence of atheromatous plaques were cut into 8 cm segments, which were then stained with iodine and scanned at low resolution, with calcified regions rescanned at high resolution. Resulting files were manually segmented to generate 3D models, which were then 3D printed in resin using a stereolithography printer to produce parts suitable for creating a biomimetic. In total, µCT files from three arterial segments (n = 2 high resolution, n = 1 low resolution) were deemed suitably calcified for segmentation, and thus were segmented to produce 3D models. 3D models of the arterial wall, intima and atheromatous calcium deposits from a high-resolution popliteal artery scan were successfully 3D printed at several scales. While this research is at an early stage, it holds great promise. The workflow for segmentation and 3D printing various components of an atheromatous plaque established here is replicable and uses software and equipment which are accessible to research laboratories in both academia and industry. The ability to print detailed models on a desktop 3D printer is unprecedented and can be improved further, which is promising for future development of biomimetics with multi-material detail of both soft tissue and calcified components of a vascular occlusion. Indeed, this workflow provides a solid foundation for future studies of CTO anatomy and the creation of true, multi-material CTO biomimetics. Such biomimetics may enable the development of improved interventional devices, as they would mimic the general in vivo CTO environment. As this method cannot be applied in vivo, we cannot yet produce patient-specific biomimetics, however, these analogues would still be important in device development, which would improve patient outcomes in critical limb ischaemia.
Asunto(s)
Biomimética , Placa Aterosclerótica , Humanos , Isquemia Crónica que Amenaza las Extremidades , Microtomografía por Rayos X , Impresión Tridimensional , Resultado del TratamientoRESUMEN
Aim: The aim of this study was to evaluate the formulation of a synthetic IGF-1 (pIGF-1) in PLGA microparticles (MP). Methods: Poly (lactic-co-glycolic acid) (PLGA) MPs loaded with pIGF-1 were prepared, characterised and evaluated using double emulsion solvent evaporation method. Results: Spherical MPs showed an average particle size of 2 µm, encapsulation efficiency (EE) of 67% and 50% degradation over 15 days. With a view to enhancing retention in the myocardium, the MP formulation was encapsulated in a cross-linked hyaluronic acid hydrogel. pIGF-1 released from MPs and from MPs suspended in hyaluronic acid hydrogel remained bioactive, determined by a significant increase in cellular proliferation of c-kit+ cells. Conclusion: This formulation has potential for loco-regional delivery to damaged myocardium to promote the survival of cardiomyocytes.
Asunto(s)
Portadores de Fármacos/química , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Ácido Hialurónico/química , Hidrogeles/química , Factor I del Crecimiento Similar a la Insulina/farmacología , Miocardio/citología , Tamaño de la Partícula , RatasRESUMEN
Electrospinning is considered a relatively simple and versatile technique to form high porosity porous scaffolds with micron to nanoscale fibers for biomedical applications. Here, electrospinning of unsaturated aliphatic polyglobalide (PGl) into well-defined fibers with an average diameter of 9 µm is demonstrated. Addition of a dithiol cross-linker and a photoinitiator to the polymer solution enabled the UV-triggered intracross-linking of the fibers during the spinning process. The in situ cross-linking of the fibers resulted in amorphous material able to swell up to 14% in tetrahydrofurane (THF) without losing the fiber morphology. Seeding mesenchymal stem cells (MSCs) onto both cross-linked and non-cross-linked PGl fibers proved their compatibility with MSCs and suitability as scaffolds for cell growth and proliferation of MSCs. Moreover, the ability to directly load cross-linked PGl with hydrophobic molecules by soaking the fiber mesh in solution is shown with Rhodamine B and Indomethacin, a hydrophobic anti-inflammatory drug. This marks an advantage over conventional aliphatic polyesters and opens opportunities for the design of drug loaded polyester scaffolds for biomedical applications or tissue engineering.
Asunto(s)
Preparaciones Farmacéuticas/química , Poliésteres/química , Polímeros/química , Solventes/química , Compuestos de Sulfhidrilo/sangre , Animales , Proliferación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Nanofibras/química , Tamaño de la Partícula , Preparaciones Farmacéuticas/administración & dosificación , Porosidad , Porcinos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Rayos UltravioletaRESUMEN
Amniotic fluid-derived stem cells (AFSCs) are a unique stem cell source that may have great potential for use in tissue engineering (TE) due to their pluripotentiality. AFSCs have previously shown angiogenic potential and may present an alternative cell source for endothelial-like cells that could be used in range of applications, including the pre-vascularisation of TE constructs and the treatment of ischaemic diseases. This study investigated the ability of these cells to differentiate down an endothelial lineage with the aim of producing an endothelial-like cell suitable for use in pre-vascularisation. As hypoxia and the associated HIF-1 pathway have been implicated in the induction of angiogenesis in a number of biological processes, it was hypothesised that culture in hypoxic conditions could enhance the endothelial differentiation of AFSCs. The cells were cultured in endothelial cell media supplemented with 50 ng mL(-1) of VEGF, maintained in normoxia, intermittent hypoxia or continuous hypoxia and assessed for markers of endothelial differentiation at day 7 and 14. The results demonstrated that AFSCs subjected to these culture conditions display an endothelial gene expression profile and adopted functional endothelial cell characteristics indicative of early endothelial differentiation. Culture in continuous hypoxia enhanced endothelial gene expression but did not enhance functional endothelial cell characteristics. Overall, AFSCs subjected to endothelial stimuli demonstrated a less mature endothelial gene expression profile and phenotype when compared with HUVECs, the endothelial cell control. However, this study is the first time that the positive effect of an extended period of continuous hypoxic culture on endothelial differentiation in AFSCs has been demonstrated.
Asunto(s)
Líquido Amniótico/citología , Diferenciación Celular/fisiología , Células Endoteliales/citología , Células Madre Pluripotentes/citología , Ingeniería de Tejidos/métodos , Líquido Amniótico/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Hipoxia de la Célula , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Células Madre Pluripotentes/metabolismo , Transcriptoma , Factor A de Crecimiento Endotelial Vascular/farmacologíaRESUMEN
Skeletogenesis is initiated during fetal development and persists through adult life as either a remodeling process in response to homeostatic regulation or as a regenerative process in response to physical injury. Mesenchymal stem cells (MSCs) play a crucial role providing progenitor cells from which osteoblasts, bone matrix forming cells are differentiated. The mechanical environment plays an important role in regulating stem cell differentiation into osteoblasts, however, the mechanisms by which MSCs respond to mechanical stimuli are yet to be fully elucidated. To increase understanding of MSC mechanotransuction and osteogenic differentiation, this study aimed to identify novel, mechanically augmented genes and pathways with pro-osteogenic functionality. Using collagen glycoaminoglycan scaffolds as mimics of native extracellular matrix, to create a 3D environment more representative of that found in bone, MSC-seeded constructs were mechanically stimulated in a flow-perfusion bioreactor. Global gene expression profiling techniques were used to identify potential candidates warranting further investigation. Of these, placental growth factor (PGF) was selected and expression levels were shown to strongly correlate to both the magnitude and duration of mechanical stimulation. We demonstrated that PGF gene expression was modulated through an actin polymerization-mediated mechanism. The functional role of PGF in modulating MSC osteogenic differentiation was interrogated, and we showed a concentration-dependent response whereby low concentrations exhibited the strongest pro-osteogenic effect. Furthermore, pre-osteoclast migration and differentiation, as well as endothelial cell tubule formation also maintained concentration-dependent responses to PGF, suggesting a potential role for PGF in bone resorption and angiogenesis, processes key to bone remodeling and fracture repair.
Asunto(s)
Células Madre Mesenquimatosas/fisiología , Osteogénesis/fisiología , Proteínas Gestacionales/genética , Animales , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Curación de Fractura/fisiología , Expresión Génica , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteogénesis/genética , Factor de Crecimiento Placentario , Proteínas Gestacionales/metabolismo , Ratas , Ratas WistarRESUMEN
The foreign body response (FBR) to implanted materials culminates in the deposition of a hypo-permeable, collagen rich fibrotic capsule by myofibroblast cells at the implant site. The fibrotic capsule can be deleterious to the function of some medical implants as it can isolate the implant from the host environment. Modulation of fibrotic capsule formation has been achieved using intermittent actuation of drug delivery implants, however the mechanisms underlying this response are not well understood. Here, we use analytical, computational, and in vitro models to understand the response of human myofibroblasts (WPMY-1 stromal cell line) to intermittent actuation using soft robotics and investigate how actuation can alter the secretion of collagen and pro/anti-inflammatory cytokines by these cells. Our findings suggest that there is a mechanical loading threshold that can modulate the fibrotic behaviour of myofibroblasts, by reducing the secretion of soluble collagen, transforming growth factor beta-1 and interleukin 1-beta, and upregulating the anti-inflammatory interleukin-10. By improving our understanding of how cells involved in the FBR respond to mechanical actuation, we can harness this technology to improve functional outcomes for a wide range of implanted medical device applications including drug delivery and cell encapsulation platforms. STATEMENT OF SIGNIFICANCE: A major barrier to the successful clinical translation of many implantable medical devices is the foreign body response (FBR) and resultant deposition of a hypo-permeable fibrotic capsule (FC) around the implant. Perturbation of the implant site using intermittent actuation (IA) of soft-robotic implants has previously been shown to modulate the FBR and reduce FC thickness. However, the mechanisms of action underlying this response were largely unknown. Here, we investigate how IA can alter the activity of myofibroblast cells, and ultimately suggest that there is a mechanical loading threshold within which their fibrotic behaviour can be modulated. These findings can be harnessed to improve functional outcomes for a wide range of medical implants, particularly drug delivery and cell encapsulation devices.
Asunto(s)
Cuerpos Extraños , Reacción a Cuerpo Extraño , Humanos , Reacción a Cuerpo Extraño/patología , Miofibroblastos/metabolismo , Cuerpos Extraños/patología , Antiinflamatorios , Colágeno/farmacología , Colágeno/metabolismo , FibrosisRESUMEN
Implantable medical devices that can facilitate therapy transport to localized sites are being developed for a number of diverse applications, including the treatment of diseases such as diabetes and cancer, and tissue regeneration after myocardial infraction. These implants can take the form of an encapsulation device which encases therapy in the form of drugs, proteins, cells, and bioactive agents, in semi-permeable membranes. Such implants have shown some success but the nature of these devices pose a barrier to the diffusion of vital factors, which is further exacerbated upon implantation due to the foreign body response (FBR). The FBR results in the formation of a dense hypo-permeable fibrous capsule around devices and is a leading cause of failure in many implantable technologies. One potential method for overcoming this diffusion barrier and enhancing therapy transport from the device is to incorporate local fluid flow. In this work, we used experimentally informed inputs to characterize the change in the fibrous capsule over time and quantified how this impacts therapy release from a device using computational methods. Insulin was used as a representative therapy as encapsulation devices for Type 1 diabetes are among the most-well characterised. We then explored how local fluid flow may be used to counteract these diffusion barriers, as well as how a more practical pulsatile flow regimen could be implemented to achieve similar results to continuous fluid flow. The generated model is a versatile tool toward informing future device design through its ability to capture the expected decrease in insulin release over time resulting from the FBR and investigate potential methods to overcome these effects.
Asunto(s)
Insulina , Insulina/administración & dosificación , Insulina/química , Humanos , Prótesis e Implantes , Reacción a Cuerpo Extraño , DifusiónRESUMEN
Our understanding of cardiac remodeling processes due to left ventricular pressure overload derives largely from animal models of aortic banding. However, these studies fail to enable control over both disease progression and reversal, hindering their clinical relevance. Here, we describe a method for progressive and reversible aortic banding based on an implantable expandable actuator that can be finely tuned to modulate aortic banding and debanding in a rat model. Through catheterization, imaging, and histologic studies, we demonstrate that our platform can recapitulate the hemodynamic and structural changes associated with pressure overload in a controllable manner. We leveraged soft robotics to enable noninvasive aortic debanding, demonstrating that these changes can be partly reversed because of cessation of the biomechanical stimulus. By recapitulating longitudinal disease progression and reversibility, this animal model could elucidate fundamental mechanisms of cardiac remodeling and optimize timing of intervention for pressure overload.
Asunto(s)
Aorta , Modelos Animales de Enfermedad , Animales , Ratas , Procedimientos Quirúrgicos Robotizados/instrumentación , Hemodinámica , Remodelación Ventricular/fisiología , Masculino , Diseño de Equipo , Ratas Sprague-Dawley , Robótica/instrumentación , Constricción , Fenómenos BiomecánicosRESUMEN
Novel block copolymers comprising poly(ethylene glycol) (PEG) and an oligo(tyrosine) block were synthesized in different compositions by N-carboxyanhydride (NCA) polymerization. It was shown that PEG2000-Tyr(6) undergoes thermoresponsive hydrogelation at a low concentration range of 0.25-3.0 wt % within a temperature range of 25-50 °C. Cryogenic transmission electron microscopy (Cryo-TEM) revealed a continuous network of fibers throughout the hydrogel sample, even at concentrations as low as 0.25 wt %. Circular dichroism (CD) results suggest that better packing of the ß-sheet tyrosine block at increasing temperature induces the reverse thermogelation. A preliminary assessment of the potential of the hydrogel for in vitro application confirmed the hydrogel is not cytotoxic, is biodegradable, and produced a sustained release of a small-molecule drug.
Asunto(s)
Calor , Hidrogeles/química , Oligopéptidos/química , Polietilenglicoles/química , Polímeros/química , Tirosina/químicaRESUMEN
Angiogenesis is critical for successful bone repair, and interestingly, miR-210 and miR-16 possess counter-active targets involved in both angiogenesis and osteogenesis: miR-210 acts as an activator by silencing EFNA3 & AcvR1b, while miR-16 inhibits both pathways by silencing VEGF & Smad5. It was thus hypothesized that dual delivery of both a miR-210 mimic and a miR-16 inhibitor from a collagen-nanohydroxyapatite scaffold system may hold significant potential for bone repair. Therefore, this systems potential to rapidly accelerate bone repair by directing enhanced angiogenic-osteogenic coupling in host cells in a rat calvarial defect model at a very early 4 week timepoint was assessed. In vitro, the treatment significantly enhanced angiogenic-osteogenic coupling of human mesenchymal stem cells, with enhanced calcium deposition after just 10 days in 2D and 14 days on scaffolds. In vivo, these dual-miRNA loaded scaffolds showed more than double bone volume and vessel recruitment increased 2.3 fold over the miRNA-free scaffolds. Overall, this study demonstrates the successful development of a dual-miRNA mimic/inhibitor scaffold for enhanced in vivo bone repair for the first time, and the possibility of extending this 'off-the-shelf' platform system to applications beyond bone offers immense potential to impact a myriad of other tissue engineering areas. STATEMENT OF SIGNIFICANCE: miRNAs have potential as a new class of bone healing therapeutics as they can enhance the regenerative capacity of bone-forming cells. However, angiogenic-osteogenic coupling is critical for successful bone repair. Therefore, this study harnesses the delivery of miR-210, known to be an activator of both angiogenesis and osteogenesis, and miR-16 inhibitor, as miR-16 is known to inhibit both pathways, from a collagen-nanohydroxyapatite scaffold system to rapidly enhance osteogenesis in vitro and bone repair in vivo in a rat calvarial defect model. Overall, it describes the successful development of the first dual-miRNA mimic/inhibitor scaffold for enhanced in vivo bone repair. This 'off-the-shelf' platform system offers immense potential to extend beyond bone applications and impact a myriad of other tissue engineering areas.
Asunto(s)
MicroARNs , Osteogénesis , Humanos , Ratas , Animales , Osteogénesis/genética , Andamios del Tejido , MicroARNs/genética , MicroARNs/metabolismo , Huesos/metabolismo , Ingeniería de Tejidos , Colágeno , Regeneración Ósea , Diferenciación CelularRESUMEN
Foreign body response (FBR) is a major challenge that affects implantable biosensors and medical devices, including glucose biosensors, leading to a deterioration in device response over time. Polymer shields are often used to mitigate this issue. Zwitterionic polymers (ZPs) are a promising class of materials that reduce biofouling of implanted devices. A series of ZPs each containing tetherable epoxide functional groups was synthesised for application as a polymer shield for eventual application as implantable glucose biosensors. The polymer shields were initially tested for the ability to resist fibrinogen adsorption and fibroblast adhesion. All synthesised ZPs showed comparable behaviour to a commercial Lipidure ZP in resisting fibrinogen adsorption. Nafion, a common anionic shield used against electrochemical interferents, showed higher protein adsorption and comparable cell adhesion resistance as uncoated control surfaces. However, a poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate) (MPC)-type ZP showed similar behaviour to Lipidure, with approximately 50% reduced fibrinogen adsorption and 80% decrease in fibroblast adhesion compared to uncoated controls. An MPC-coated amperometric glucose biosensor showed comparable current density and a 1.5-fold increase in sensitivity over an uncoated control biosensor, whereas all other polymer shields tested, including Lipidure, Nafion and a poly(ethyleneglycol) polymer, resulted in lower sensitivity and current density. Collectively, these characteristics make MPC-polymer shield coatings an appealing possibility for use in implantable glucose sensors and other implanted devices with the aim of reducing FBR while maintaining sensor performance.
RESUMEN
Understanding the immune system's foreign body response (FBR) is essential when developing and validating a biomaterial. Macrophage activation and proliferation are critical events in FBR that can determine the material's biocompatibility and fate in vivo. In this study, two different macro-encapsulation pouches intended for pancreatic islet transplantation were implanted into streptozotocin-induced diabetes rat models for 15 days. Post-explantation, the fibrotic capsules were analyzed by standard immunohistochemistry as well as non-invasive Raman microspectroscopy to determine the degree of FBR induced by both materials. The potential of Raman microspectroscopy to discern different processes of FBR was investigated and it was shown that Raman microspectroscopy is capable of targeting ECM components of the fibrotic capsule as well as pro and anti-inflammatory macrophage activation states, in a molecular-sensitive and marker-independent manner. In combination with multivariate analysis, spectral shifts reflecting conformational differences in Col I were identified and allowed to discriminate fibrotic and native interstitial connective tissue fibers. Moreover, spectral signatures retrieved from nuclei demonstrated changes in methylation states of nucleic acids in M1 and M2 phenotypes, relevant as indicator for fibrosis progression. This study could successfully implement Raman microspectroscopy as complementary tool to study in vivo immune-compatibility providing insightful information of FBR of biomaterials and medical devices, post-implantation.
RESUMEN
Our understanding of cardiac remodeling processes due to left ventricular pressure overload derives largely from animal models of aortic banding. However, these studies fail to simultaneously enable control over disease progression and reversal, hindering their clinical relevance. Here, we describe a method for controlled, progressive, and reversible aortic banding based on an implantable expandable actuator that can be finely controlled to modulate aortic banding and debanding in a rat model. Through catheterization, imaging, and histologic studies, we demonstrate that our model can recapitulate the hemodynamic and structural changes associated with pressure overload in a controllable manner. We leverage the ability of our model to enable non-invasive aortic debanding to show that these changes can be partly reversed due to cessation of the biomechanical stimulus. By recapitulating longitudinal disease progression and reversibility, this model could elucidate fundamental mechanisms of cardiac remodeling and optimize timing of intervention for pressure overload.
RESUMEN
Fibrosis is a consequence of the pathological remodeling of extracellular matrix (ECM) structures in the connective tissue of an organ. It is often caused by chronic inflammation, which over time, progressively leads to an excess deposition of collagen type I (COL I) that replaces healthy tissue structures, in many cases leaving a stiff scar. Increasing fibrosis can lead to organ failure and death; therefore, developing methods that potentially allow real-time monitoring of early onset or progression of fibrosis are highly valuable. In this study, the ECM structures of diseased and healthy human tissue from multiple organs were investigated for the presence of fibrosis using routine histology and marker-independent Raman microspectroscopy and Raman imaging. Spectral deconvolution of COL I Raman spectra allowed the discrimination of fibrotic and non-fibrotic COL I fibers. Statistically significant differences were identified in the amide I region of the spectral subpeak at 1608 cm-1, which was deemed to be representative for structural changes in COL I fibers in all examined fibrotic tissues. Raman spectroscopy-based methods in combination with this newly discovered spectroscopic biomarker potentially offer a diagnostic approach to non-invasively track and monitor the progression of fibrosis. STATEMENT OF SIGNIFICANCE: Current diagnosis of fibrosis still relies on histopathological examination with invasive biopsy procedures. Although, several non-invasive imaging techniques such as positron emission tomography, single-photon emission computed tomography and second harmonic generation are gradually employed in preclinical or clinical studies, these techniques are limited in spatial resolution and the morphological interpretation highly relies on individual experience and knowledge. In this study, we propose a non-destructive technique, Raman microspectroscopy, to discriminate fibrotic changes of collagen type I based on a molecular biomarker. The changes of the secondary structure of collagen type I can be identified by spectral deconvolution, which potentially can provide an automatic diagnosis for fibrotic tissues in the clinical applicaion.
Asunto(s)
Colágeno Tipo I , Matriz Extracelular , Humanos , Espectrometría Raman/métodos , Cicatriz , BiomarcadoresRESUMEN
The foreign body response impedes the function and longevity of implantable drug delivery devices. As a dense fibrotic capsule forms, integration of the device with the host tissue becomes compromised, ultimately resulting in device seclusion and treatment failure. We present FibroSensing Dynamic Soft Reservoir (FSDSR), an implantable drug delivery device capable of monitoring fibrotic capsule formation and overcoming its effects via soft robotic actuations. Occlusion of the FSDSR porous membrane was monitored over 7 days in a rodent model using electrochemical impedance spectroscopy. The electrical resistance of the fibrotic capsule correlated to its increase in thickness and volume. Our FibroSensing membrane showed great sensitivity in detecting changes at the abiotic/biotic interface, such as collagen deposition and myofibroblast proliferation. The potential of the FSDSR to overcome fibrotic capsule formation and maintain constant drug dosing over time was demonstrated in silico and in vitro. Controlled closed loop release of methylene blue into agarose gels (with a comparable fold change in permeability relating to 7 and 28 days in vivo) was achieved by adjusting the magnitude and frequency of pneumatic actuations after impedance measurements by the FibroSensing membrane. By sensing fibrotic capsule formation in vivo, the FSDSR will be capable of probing and adapting to the foreign body response through dynamic actuation changes. Informed by real-time sensor signals, this device offers the potential for long-term efficacy and sustained drug dosing, even in the setting of fibrotic capsule formation.
Asunto(s)
Cuerpos Extraños , Robótica , Humanos , Sistemas de Liberación de Medicamentos , Impedancia Eléctrica , Azul de MetilenoRESUMEN
Diabetes mellitus refers to a group of metabolic disorders which affect how the body uses glucose impacting approximately 9% of the population worldwide. This review covers the most recent technological advances envisioned to control and/or reverse Type 1 diabetes mellitus (T1DM), many of which will also prove effective in treating the other forms of diabetes mellitus. Current standard therapy for T1DM involves multiple daily glucose measurements and insulin injections. Advances in glucose monitors, hormone delivery systems, and control algorithms generate more autonomous and personalised treatments through hybrid and fully automated closed-loop systems, which significantly reduce hypo- and hyperglycaemic episodes and their subsequent complications. Bi-hormonal systems that co-deliver glucagon or amylin with insulin aim to reduce hypoglycaemic events or increase time spent in target glycaemic range, respectively. Stimuli responsive materials for the controlled delivery of insulin or glucagon are a promising alternative to glucose monitors and insulin pumps. By their self-regulated mechanism, these "smart" drugs modulate their potency, pharmacokinetics and dosing depending on patients' glucose levels. Islet transplantation is a potential cure for T1DM as it restores endogenous insulin and glucagon production, but its use is not yet widespread due to limited islet sources and risks of chronic immunosuppression. New encapsulation strategies that promote angiogenesis and oxygen delivery while protecting islets from recipients' immune response may overcome current limiting factors.
Asunto(s)
Diabetes Mellitus Tipo 1 , Dispositivos Electrónicos Vestibles , Glucemia/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Glucagón/uso terapéutico , Glucosa , Humanos , Insulina/uso terapéutico , TecnologíaRESUMEN
Analysing the composition and organisation of the fibrous capsule formed as a result of the Foreign Body Response (FBR) to medical devices, is imperative for medical device improvement and biocompatibility. Typically, analysis is performed using histological techniques which often involve random sampling strategies. This method is excellent for acquiring representative values but can miss the unique spatial distribution of features in 3D, especially when analysing devices used in large animal studies. To overcome this limitation, we demonstrate a non-destructive method for high-resolution large sample imaging of the fibrous capsule surrounding human-sized implanted devices using diffusion tensor imaging (DTI). In this study we analyse the fibrous capsule surrounding two unique macroencapsulation devices that have been implanted in a porcine model for 21 days. DTI is used for 3D visualisation of the microstructural organisation and validated using the standard means of fibrous capsule investigation; histological analysis and qualitative micro computed tomography (microCT) and scanning electron microscopy (SEM) imaging. DTI demonstrated the ability to distinguish microstructural differences in the fibrous capsules surrounding two macroencapsulation devices made from different materials and with different surface topographies. DTI-derived metrics yielded insight into the microstructural organisation of both capsules which was corroborated by microCT, SEM and histology. The non-invasive characterisation of the integration of implants in the body has the potential to positively influence analysis methods in pre-clinical studies and accelerate the clinical translation of novel implantable devices.
RESUMEN
Fibrous capsule (FC) formation, secondary to the foreign body response (FBR), impedes molecular transport and is detrimental to the long-term efficacy of implantable drug delivery devices, especially when tunable, temporal control is necessary. We report the development of an implantable mechanotherapeutic drug delivery platform to mitigate and overcome this host immune response using two distinct, yet synergistic soft robotic strategies. Firstly, daily intermittent actuation (cycling at 1 Hz for 5 minutes every 12 hours) preserves long-term, rapid delivery of a model drug (insulin) over 8 weeks of implantation, by mediating local immunomodulation of the cellular FBR and inducing multiphasic temporal FC changes. Secondly, actuation-mediated rapid release of therapy can enhance mass transport and therapeutic effect with tunable, temporal control. In a step towards clinical translation, we utilise a minimally invasive percutaneous approach to implant a scaled-up device in a human cadaveric model. Our soft actuatable platform has potential clinical utility for a variety of indications where transport is affected by fibrosis, such as the management of type 1 diabetes.
Asunto(s)
Longevidad , Prótesis e Implantes , Sistemas de Liberación de Medicamentos , Fibrosis , Reacción a Cuerpo Extraño , HumanosRESUMEN
Collagen-glycosaminoglycan scaffolds that have been used clinically for skin regeneration have also shown significant promise for other applications in tissue engineering. However, regeneration of thicker tissues with the aid of implanted biomaterials is likely to depend on, or be accelerated by, the ability to establish rapid vascularisation of the implant. The present study aims to establish a nascent vascular network in vitro within a CG scaffold as a first step towards that goal. Mesenchymal stem cells (MSCs) were chosen as primary vasculogenic candidate cells and a culture medium that promoted maximal network formation on Matrigel by these cells was selected. MSCs seeded in the CG scaffold formed networks of cord-like structures after one to two weeks in the presence of the vasculogenic medium; similar structures were formed by aortic endothelial cells (ECs) cultured for comparison. Gene expression analysis suggested that the MSCs began to adopt an endothelial phenotype, with RNA for PECAM and VCAM rising while that for alpha-smooth muscle actin fell. However there was no increase in Tie-2 and vWF expression. Addition of smooth muscle cells (SMCs) as a potential perivascular stabilising component did not have a noticeable effect on MSC-derived networks, although it enhanced EC-derived structures.