Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(6): e2305947121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289952

RESUMEN

Optic neuropathies, characterized by injury of retinal ganglion cell (RGC) axons of the optic nerve, cause incurable blindness worldwide. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) represent a promising "cell-free" therapy for regenerative medicine; however, the therapeutic effect on neural restoration fluctuates, and the underlying mechanism is poorly understood. Here, we illustrated that intraocular administration of MSC-sEVs promoted both RGC survival and axon regeneration in an optic nerve crush mouse model. Mechanistically, MSC-sEVs primarily targeted retinal mural cells to release high levels of colony-stimulating factor 3 (G-CSF) that recruited a neural restorative population of Ly6Clow monocytes/monocyte-derived macrophages (Mo/MΦ). Intravitreal administration of G-CSF, a clinically proven agent for treating neutropenia, or donor Ly6Clow Mo/MΦ markedly improved neurological outcomes in vivo. Together, our data define a unique mechanism of MSC-sEV-induced G-CSF-to-Ly6Clow Mo/MΦ signaling in repairing optic nerve injury and highlight local delivery of MSC-sEVs, G-CSF, and Ly6Clow Mo/MΦ as therapeutic paradigms for the treatment of optic neuropathies.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Traumatismos del Nervio Óptico , Ratones , Animales , Axones/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/terapia , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/fisiología , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo
2.
PLoS Biol ; 19(12): e3001510, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34932561

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects a broader range of mammalian species than previously predicted, binding a diversity of angiotensin converting enzyme 2 (ACE2) orthologs despite extensive sequence divergence. Within this sequence degeneracy, we identify a rare sequence combination capable of conferring SARS-CoV-2 resistance. We demonstrate that this sequence was likely unattainable during human evolution due to deleterious effects on ACE2 carboxypeptidase activity, which has vasodilatory and cardioprotective functions in vivo. Across the 25 ACE2 sites implicated in viral binding, we identify 6 amino acid substitutions unique to mouse-one of the only known mammalian species resistant to SARS-CoV-2. Substituting human variants at these positions is sufficient to confer binding of the SARS-CoV-2 S protein to mouse ACE2, facilitating cellular infection. Conversely, substituting mouse variants into either human or dog ACE2 abolishes viral binding, diminishing cellular infection. However, these same substitutions decrease human ACE2 activity by 50% and are predicted as pathogenic, consistent with the extreme rarity of human polymorphisms at these sites. This trade-off can be avoided, however, depending on genetic background; if substituted simultaneously, these same mutations have no deleterious effect on dog ACE2 nor that of the rodent ancestor estimated to exist 70 million years ago. This genetic contingency (epistasis) may have therefore opened the road to resistance for some species, while making humans susceptible to viruses that use these ACE2 surfaces for binding, as does SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Resistencia a la Enfermedad/genética , Epistasis Genética , SARS-CoV-2/fisiología , Aminoácidos , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Sitios de Unión , COVID-19/enzimología , COVID-19/genética , Perros , Evolución Molecular , Frecuencia de los Genes , Humanos , Hidrólisis , Ratones , Mutación , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Acoplamiento Viral
3.
Ophthalmology ; 125(7): 1054-1063, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29525602

RESUMEN

PURPOSE: To assess systemic vascular endothelial growth factor (VEGF)-A levels after treatment with intravitreous aflibercept, bevacizumab, or ranibizumab. DESIGN: Comparative-effectiveness trial with participants randomly assigned to 2 mg aflibercept, 1.25 mg bevacizumab, or 0.3 mg ranibizumab after a re-treatment algorithm. PARTICIPANTS: Participants with available plasma samples (N = 436). METHODS: Plasma samples were collected before injections at baseline and 4-week, 52-week, and 104-week visits. In a preplanned secondary analysis, systemic-free VEGF levels from an enzyme-linked immunosorbent assay were compared across anti-VEGF agents and correlated with systemic side effects. MAIN OUTCOME MEASURES: Changes in the natural log (ln) of plasma VEGF levels. RESULTS: Baseline free VEGF levels were similar across all 3 groups. At 4 weeks, mean ln(VEGF) changes were -0.30±0.61 pg/ml, -0.31±0.54 pg/ml, and -0.02±0.44 pg/ml for the aflibercept, bevacizumab, and ranibizumab groups, respectively. The adjusted differences between treatment groups (adjusted confidence interval [CI]; P value) were -0.01 (-0.12 to +0.10; P = 0.89), -0.31 (-0.44 to -0.18; P < 0.001), and -0.30 (-0.43 to -0.18; P < 0.001) for aflibercept-bevacizumab, aflibercept-ranibizumab, and bevacizumab-ranibizumab, respectively. At 52 weeks, a difference in mean VEGF changes between bevacizumab and ranibizumab persisted (-0.23 [-0.38 to -0.09]; P < 0.001); the difference between aflibercept and ranibizumab was -0.12 (P = 0.07) and between aflibercept and bevacizumab was +0.11 (P = 0.07). Treatment group differences at 2 years were similar to 1 year. No apparent treatment differences were detected at 52 or 104 weeks in the cohort of participants not receiving injections within 1 or 2 months before plasma collection. Participants with (N = 9) and without (N = 251) a heart attack or stroke had VEGF levels that appeared similar. CONCLUSIONS: These data suggest that decreases in plasma free-VEGF levels are greater after treatment with aflibercept or bevacizumab compared with ranibizumab at 4 weeks. At 52 and 104 weeks, a greater decrease was observed in bevacizumab versus ranibizumab. Results from 2 subgroups of participants who did not receive injections within at least 1 month and 2 months before collection suggest similar changes in VEGF levels after stopping injections. It is unknown whether VEGF levels return to normal as the drug is cleared from the system or whether the presence of the drug affects the assay's ability to accurately measure free VEGF. No significant associations between VEGF concentration and systemic factors were noted.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Retinopatía Diabética/tratamiento farmacológico , Edema Macular/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/sangre , Bevacizumab/uso terapéutico , Retinopatía Diabética/sangre , Retinopatía Diabética/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Humanos , Inyecciones Intravítreas , Edema Macular/sangre , Edema Macular/diagnóstico , Masculino , Persona de Mediana Edad , Ranibizumab/uso terapéutico , Receptores de Factores de Crecimiento Endotelial Vascular/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Retratamiento , Tomografía de Coherencia Óptica , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Agudeza Visual
4.
Proc Natl Acad Sci U S A ; 112(50): E6927-36, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26621751

RESUMEN

Delayed revascularization of ischemic neural tissue is a major impediment to preservation of function in central nervous system (CNS) diseases including stroke and ischemic retinopathies. Therapeutic strategies allowing rapid revascularization are greatly needed to reduce ischemia-induced cellular damage and suppress harmful pathologic neovascularization. However, key mechanisms governing vascular recovery in ischemic CNS, including regulatory molecules governing the transition from tissue injury to tissue repair, are largely unknown. NF-E2-related factor 2 (Nrf2) is a major stress-response transcription factor well known for its cell-intrinsic cytoprotective function. However, its role in cell-cell crosstalk is less appreciated. Here we report that Nrf2 is highly activated in ischemic retina and promotes revascularization by modulating neurons in their paracrine regulation of endothelial cells. Global Nrf2 deficiency strongly suppresses retinal revascularization and increases pathologic neovascularization in a mouse model of ischemic retinopathy. Conditional knockout studies demonstrate a major role for neuronal Nrf2 in vascular regrowth into avascular retina. Deletion of neuronal Nrf2 results in semaphorin 6A (Sema6A) induction in hypoxic/ischemic retinal ganglion cells in a hypoxia-inducible factor-1 alpha (HIF-1α)-dependent fashion. Sema6A expression increases in avascular inner retina and colocalizes with Nrf2 in human fetal eyes. Extracellular Sema6A leads to dose-dependent suppression of the migratory phenotype of endothelial cells through activation of Notch signaling. Lentiviral-mediated delivery of Sema6A small hairpin RNA (shRNA) abrogates the defective retinal revascularization in Nrf2-deficient mice. Importantly, pharmacologic Nrf2 activation promotes reparative angiogenesis and suppresses pathologic neovascularization. Our findings reveal a unique function of Nrf2 in reprogramming ischemic tissue toward neurovascular repair via Sema6A regulation, providing a potential therapeutic strategy for ischemic retinal and CNS diseases.


Asunto(s)
Isquemia/metabolismo , Factor 2 Relacionado con NF-E2/fisiología , Neuronas/metabolismo , Vasos Retinianos/crecimiento & desarrollo , Semaforinas/metabolismo , Animales , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Isquemia/patología , Ratones , Neovascularización Patológica , Receptores Notch/metabolismo , Regeneración , Vasos Retinianos/patología , Transducción de Señal
5.
Exp Eye Res ; 154: 151-158, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27923559

RESUMEN

Oxidative stress plays a key role in age-related macular degeneration and hereditary retinal degenerations. Light damage in rodents has been used extensively to model oxidative stress-induced photoreceptor degeneration, and photo-oxidative injury from blue light is particularly damaging to photoreceptors. The endogenous factors protecting photoreceptors from oxidative stress, including photo-oxidative stress, are continuing to be elucidated. In this study, we evaluated the effect of blue light exposure on photoreceptors and its relationship to Nrf2 using cultured murine photoreceptor (661W) cells. 661W cells were exposed to blue light at 2500 lux. Exposure to blue light for 6-24 h resulted in a significant increase in intracellular reactive oxygen species (ROS) and death of 661W cells in a time-dependent fashion. Blue light exposure resulted in activation of Nrf2, as indicated by an increase in nuclear translocation of Nrf2. This was associated with a significant induction of expression of Nrf2 as well as an array of Nrf2 target genes, including antioxidant genes, as indicated by quantitative reverse transcription PCR (qRT-PCR). In order to determine the functional role of Nrf2, siRNA-mediated knockdown studies were performed. Nrf2-knockdown in 661W cells resulted in significant exacerbation of blue light-induced reactive oxygen species levels as well as cell death. Taken together, these findings indicate that Nrf2 is an important endogenous protective factor against oxidative stress in photoreceptor cells. This suggests that drugs targeting Nrf2 could be considered as a neuroprotective strategy for photoreceptors in AMD and other retinal conditions.


Asunto(s)
Apoptosis , Regulación de la Expresión Génica , Luz/efectos adversos , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Células Fotorreceptoras/metabolismo , Degeneración Retiniana/metabolismo , Animales , Western Blotting , Recuento de Células , Línea Celular , Ratones , Factor 2 Relacionado con NF-E2/biosíntesis , Neuroprotección , Células Fotorreceptoras/patología , Células Fotorreceptoras/efectos de la radiación , ARN/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Degeneración Retiniana/genética , Degeneración Retiniana/patología
6.
Biochim Biophys Acta ; 1851(3): 290-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25562624

RESUMEN

We recently demonstrated that 12/15-lipoxygenase (LOX) derived metabolites, hydroxyeicosatetraenoic acids (HETEs), contribute to diabetic retinopathy (DR) via NADPH oxidase (NOX) and disruption of the balance in retinal levels of the vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). Here, we test whether PEDF ameliorates retinal vascular injury induced by HETEs and the underlying mechanisms. Furthermore, we pursue the causal relationship between LOX-NOX system and regulation of PEDF expression during DR. For these purposes, we used an experimental eye model in which normal mice were injected intravitreally with 12-HETE with/without PEDF. Thereafter, fluorescein angiography (FA) was used to evaluate the vascular leakage, followed by optical coherence tomography (OCT) to assess the presence of angiogenesis. FA and OCT reported an increased vascular leakage and pre-retinal neovascularization, respectively, in response to 12-HETE that were not observed in the PEDF-treated group. Moreover, PEDF significantly attenuated the increased levels of vascular cell and intercellular adhesion molecules, VCAM-1 and ICAM-1, elicited by 12-HETE injection. Accordingly, the direct relationship between HETEs and PEDF has been explored through in-vitro studies using Müller cells (rMCs) and human retinal endothelial cells (HRECs). The results showed that 12- and 15-HETEs triggered the secretion of TNF-α and IL-6, as well as activation of NFκB in rMCs and significantly increased permeability and reduced zonula occludens protein-1 (ZO-1) immunoreactivity in HRECs. All these effects were prevented in PEDF-treated cells. Furthermore, interest in PEDF regulation during DR has been expanded to include NOX system. Retinal PEDF was significantly restored in diabetic mice treated with NOX inhibitor, apocynin, or lacking NOX2 up to 80% of the control level. Collectively, our findings suggest that interfering with LOX-NOX signaling opens up a new direction for treating DR by restoring endogenous PEDF that carries out multilevel vascular protective functions.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/antagonistas & inhibidores , Retinopatía Diabética/tratamiento farmacológico , Proteínas del Ojo/farmacología , Ácidos Hidroxieicosatetraenoicos/antagonistas & inhibidores , Factores de Crecimiento Nervioso/farmacología , Retina/efectos de los fármacos , Neovascularización Retiniana/tratamiento farmacológico , Serpinas/farmacología , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacología , Acetofenonas/farmacología , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Regulación de la Expresión Génica , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacología , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Inyecciones Intravítreas , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , NADPH Oxidasa 2 , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Retina/metabolismo , Retina/patología , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Proteína de la Zonula Occludens-1/genética
8.
Proc Natl Acad Sci U S A ; 110(41): E3910-8, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24062466

RESUMEN

Angiogenesis, in which new blood vessels form via endothelial cell (EC) sprouting from existing vessels, is a critical event in embryonic development and multiple disease processes. Many insights have been made into key EC receptors and ligands/growth factors that govern sprouting angiogenesis, but intracellular molecular mechanisms of this process are not well understood. NF-E2-related factor 2 (Nrf2) is a transcription factor well-known for regulating the stress response in multiple pathologic settings, but its role in development is less appreciated. Here, we show that Nrf2 is increased and activated during vascular development. Global deletion of Nrf2 resulted in reduction of vascular density as well as EC sprouting. This was also observed with specific deletion of Nrf2 in ECs, but not with deletion of Nrf2 in the surrounding nonvascular tissue. Nrf2 deletion resulted in increased delta-like ligand 4 (Dll4) expression and Notch activity in ECs. Blockade of Dll4 or Notch signaling restored the vascular phenotype in Nrf2 KOs. Constitutive activation of endothelial Nrf2 enhanced EC sprouting and vascularization by suppression of Dll4/Notch signaling in vivo and in vitro. Nrf2 activation in ECs suppressed Dll4 expression under normoxia and hypoxia and inhibited Dll4-induced Notch signaling. Activation of Nrf2 blocked VEGF induction of VEGFR2-PI3K/Akt and downregulated HIF-2α in ECs, which may serve as important mechanisms for Nrf2 inhibition of Dll4 and Notch signaling. Our data reveal a function for Nrf2 in promoting the angiogenic sprouting phenotype in vascular ECs.


Asunto(s)
Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Factor 2 Relacionado con NF-E2/metabolismo , Neovascularización Fisiológica/fisiología , Vasos Retinianos/embriología , Proteínas Adaptadoras Transductoras de Señales , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Bromodesoxiuridina , Proteínas de Unión al Calcio , Crioultramicrotomía , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Captura por Microdisección con Láser , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Notch/metabolismo , Retina/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(36): E3425-34, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23959876

RESUMEN

Vision loss from ischemic retinopathies commonly results from the accumulation of fluid in the inner retina [macular edema (ME)]. Although the precise events that lead to the development of ME remain under debate, growing evidence supports a role for an ischemia-induced hyperpermeability state regulated, in part, by VEGF. Monthly treatment with anti-VEGF therapies is effective for the treatment of ME but results in a major improvement in vision in a minority of patients, underscoring the need to identify additional therapeutic targets. Using the oxygen-induced retinopathy mouse model for ischemic retinopathy, we provide evidence showing that hypoxic Müller cells promote vascular permeability by stabilizing hypoxia-inducible factor-1α (HIF-1α) and secreting angiogenic cytokines. Blocking HIF-1α translation with digoxin inhibits the promotion of endothelial cell permeability in vitro and retinal edema in vivo. Interestingly, Müller cells require HIF--but not VEGF--to promote vascular permeability, suggesting that other HIF-dependent factors may contribute to the development of ME. Using gene expression analysis, we identify angiopoietin-like 4 (ANGPTL4) as a cytokine up-regulated by HIF-1 in hypoxic Müller cells in vitro and the ischemic inner retina in vivo. ANGPTL4 is critical and sufficient to promote vessel permeability by hypoxic Müller cells. Immunohistochemical analysis of retinal tissue from patients with diabetic eye disease shows that HIF-1α and ANGPTL4 localize to ischemic Müller cells. Our results suggest that ANGPTL4 may play an important role in promoting vessel permeability in ischemic retinopathies and could be an important target for the treatment of ME.


Asunto(s)
Angiopoyetinas/metabolismo , Permeabilidad Capilar , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuronas Retinianas/metabolismo , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/genética , Animales , Western Blotting , Hipoxia de la Célula , Células Cultivadas , Retinopatía Diabética/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inmunohistoquímica , Isquemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Neuronas Retinianas/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
J Cell Physiol ; 230(6): 1310-20, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25474999

RESUMEN

Endothelial cells play a major role in the initiation and perpetuation of the inflammatory process in health and disease, including their pivotal role in leukocyte recruitment. The role of pro-inflammatory transcription factors in this process has been well-described, including NF-κB. However, much less is known regarding transcription factors that play an anti-inflammatory role in endothelial cells. Myocyte enhancer factor 2 C (MEF2C) is a transcription factor known to regulate angiogenesis in endothelial cells. Here, we report that MEF2C plays a critical function as an inhibitor of endothelial cell inflammation. Tumor necrosis factor (TNF)-α inhibited MEF2C expression in endothelial cells. Knockdown of MEF2C in endothelial cells resulted in the upregulation of pro-inflammatory molecules and stimulated leukocyte adhesion to endothelial cells. MEF2C knockdown also resulted in NF-κB activation in endothelial cells. Conversely, MEF2C overexpression by adenovirus significantly repressed TNF-α induction of pro-inflammatory molecules, activation of NF-κB, and leukocyte adhesion to endothelial cells. This inhibition of leukocyte adhesion by MEF2C was partially mediated by induction of KLF2. In mice, lipopolysaccharide (LPS)-induced leukocyte adhesion to the retinal vasculature was significantly increased by endothelial cell-specific ablation of MEF2C. Taken together, these results demonstrate that MEF2C is a novel negative regulator of inflammation in endothelial cells and may represent a therapeutic target for vascular inflammation.


Asunto(s)
Células Endoteliales/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Animales , Adhesión Celular/fisiología , Células Cultivadas , Endotelio Vascular/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Leucocitos/metabolismo , Lipopolisacáridos/farmacología , Factores de Transcripción MEF2/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
11.
J Neurochem ; 133(2): 233-41, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25683606

RESUMEN

Retinal ischemia plays a critical role in multiple vision-threatening diseases and leads to death of retinal neurons, particularly ganglion cells. Oxidative stress plays an important role in this ganglion cell loss. Nrf2 (NF-E2-related factor 2) is a major regulator of the antioxidant response, and its role in the retina is increasingly appreciated. We investigated the potential retinal neuroprotective function of Nrf2 after ischemia-reperfusion (I/R) injury. In an experimental model of retinal I/R, Nrf2 knockout mice exhibited much greater loss of neuronal cells in the ganglion cell layer than wild-type mice. Primary retinal ganglion cells isolated from Nrf2 knockout mice exhibited decreased cell viability compared to wild-type retinal ganglion cells, demonstrating the cell-intrinsic protective role of Nrf2. The retinal neuronal cell line 661W exhibited reduced cell viability following siRNA-mediated knockdown of Nrf2 under conditions of oxidative stress, and this was associated with exacerbation of increase in reactive oxygen species. The synthetic triterpenoid CDDO-Im (2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide), a potent Nrf2 activator, inhibited reactive oxygen species increase in cultured 661W under oxidative stress conditions and increased neuronal cell survival after I/R injury in wild-type, but not Nrf2 knockout mice. Our findings indicate that Nrf2 exhibits a retinal neuroprotective function in I/R and suggest that pharmacologic activation of Nrf2 could be a therapeutic strategy. Oxidative stress is thought to be an important mediator of retinal ganglion cell death in ischemia-reperfusion injury. We found that the transcription factor NF-E2-related factor 2 (Nrf2), a major regulator of oxidative stress, is an important endogenous neuroprotective molecule in retinal ganglion cells in ischemia-reperfusion, exerting a cell-autonomous protective effect.  The triterpenoid 2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) reduces neurodegeneration following ischemia-reperfusion in an Nrf2-dependent fashion. This suggests that Nrf2-activating drugs including triterpenoids could be a therapeutic strategy for retinal neuroprotection.


Asunto(s)
Isquemia/patología , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Supervivencia Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Imidazoles/farmacología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/genética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , ARN Interferente Pequeño/farmacología , Retina/citología , Células Ganglionares de la Retina/metabolismo , terc-Butilhidroperóxido/farmacología
12.
J Neuroinflammation ; 12: 239, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26689280

RESUMEN

BACKGROUND: Retinal ischemia results in neuronal degeneration and contributes to the pathogenesis of multiple blinding diseases. Recently, the fumaric acid ester dimethyl fumarate (DMF) has been FDA-approved for the treatment of multiple sclerosis, based on its neuroprotective and anti-inflammatory effects. Its potential role as a neuroprotective agent for retinal diseases has received little attention. In addition, DMF's mode of action remains elusive, although studies have suggested nuclear factor erythroid 2-related factor 2 (Nrf2) activation as an important mechanism. Here we investigated the neuroprotective role of monomethyl fumarate (MMF), the biologically active metabolite of DMF, in retinal ischemia-reperfusion (I/R) injury, and examined the role of Nrf2 in mediating MMF action. METHODS: Wild-type C57BL/6J and Nrf2 knockout (KO) mice were subjected to 90 min of retinal ischemia followed by reperfusion. Mice received daily intraperitoneal injection of MMF. Inflammatory gene expression was measured using quantitative reverse transcription PCR (qRT-PCR) at 48 h after I/R injury. Seven days after I/R, qRT-PCR for Nrf2 target gene expression, immunostaining for Müller cell gliosis and cell loss in the ganglion cell layer (GCL), and electroretinography for retinal function were performed. RESULTS: The results of this study confirmed that MMF reduces retinal neurodegeneration in an Nrf2-dependent manner. MMF treatment significantly increased the expression of Nrf2-regulated antioxidative genes, suppressed inflammatory gene expression, reduced Müller cell gliosis, decreased neuronal cell loss in the GCL, and improved retinal function measured by electroretinogram (ERG) after retinal I/R injury in wild-type mice. Importantly, these MMF-mediated beneficial effects were not observed in Nrf2 KO mice. CONCLUSIONS: These results indicate that fumaric acid esters (FAEs) exert a neuronal protective function in the retinal I/R model and further validate Nrf2 modulation as a major mode of action of FAEs. This suggests that DMF and FAEs could be a potential therapeutic agent for activation of the Nrf2 pathway in retinal and possibly systemic diseases.


Asunto(s)
Fumaratos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/patología , Degeneración Retiniana/patología , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión/metabolismo , Degeneración Retiniana/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Ophthalmology ; 122(7): 1426-37, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25972260

RESUMEN

PURPOSE: To determine whether scatter and grid laser photocoagulation (laser) adds benefit to ranibizumab injections in patients with macular edema from retinal vein occlusion (RVO) and to compare 0.5-mg with 2.0-mg ranibizumab. DESIGN: Randomized, double-masked, controlled clinical trial. PARTICIPANTS: Thirty-nine patients with central RVO (CRVO) and 42 with branch RVO (BRVO). METHODS: Subjects were randomized to 0.5 mg or 2.0 mg ranibizumab every 4 weeks for 24 weeks and re-randomized to pro re nata ranibizumab plus laser or ranibizumab alone. MAIN OUTCOME MEASURES: Mean change from baseline best-corrected visual acuity (BCVA) at week 24 for BCVA at weeks 48, 96, and 144 for second randomization. RESULTS: Mean improvement from baseline BCVA at week 24 was 15.5 and 15.8 letters in the 0.5-mg and 2.0-mg CRVO groups, and 12.1 and 14.6 letters in the 0.5-mg and 2.0-mg BRVO groups. For CRVO, but not BRVO, there was significantly greater reduction from baseline mean central subfield thickness (CST) in the 2.0-mg versus 0.5-mg group (396.1 vs. 253.5 µm; P = 0.03). For the second randomization in CRVO patients, there was no significant difference from week 24 BCVA in the ranibizumab plus laser versus the ranibizumab only groups at week 48 (-3.3 vs. 0.0 letters), week 96 (+0.69 vs. -1.6 letters), or week 144 (+0.4 vs. -6.7 letters), and a significant increase from week 24 mean CST at week 48 (+94.7 vs. +15.2 µm; P = 0.05) but not weeks 96 or 144. For BRVO, there was a significant reduction from week 24 mean BCVA in ranibizumab plus laser versus ranibizumab at week 48 (-7.5 vs. +2.8; P < 0.01) and week 96 (-2.0 vs. +4.8; P < 0.03), but not week 144, and there were no differences in mean CST change from week 24 at weeks 48, 96, or 144. Laser failed to increase edema resolution or to reduce the ranibizumab injections between weeks 24 and 144. CONCLUSIONS: In patients with macular edema resulting from RVO, there was no short-term clinically significant benefit from monthly injections of 2.0-mg versus 0.5-mg ranibizumab injections and no long-term benefit in BCVA, resolution of edema, or number of ranibizumab injections obtained by addition of laser treatment to ranibizumab.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Coagulación con Láser , Edema Macular/terapia , Oclusión de la Vena Retiniana/terapia , Anciano , Terapia Combinada , Método Doble Ciego , Femenino , Humanos , Inyecciones Intravítreas , Edema Macular/diagnóstico , Edema Macular/tratamiento farmacológico , Edema Macular/cirugía , Masculino , Persona de Mediana Edad , Ranibizumab , Oclusión de la Vena Retiniana/diagnóstico , Oclusión de la Vena Retiniana/tratamiento farmacológico , Oclusión de la Vena Retiniana/cirugía , Tomografía de Coherencia Óptica , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Agudeza Visual/fisiología
14.
Diabetologia ; 57(1): 204-13, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24186494

RESUMEN

AIMS/HYPOTHESIS: Although much is known about the pathophysiological processes contributing to diabetic retinopathy (DR), the role of protective pathways has received less attention. The transcription factor nuclear factor erythroid-2-related factor 2 (also known as NFE2L2 or NRF2) is an important regulator of oxidative stress and also has anti-inflammatory effects. The objective of this study was to explore the potential role of NRF2 as a protective mechanism in DR. METHODS: Retinal expression of NRF2 was investigated in human donor and mouse eyes by immunohistochemistry. The effect of NRF2 modulation on oxidative stress was studied in the human Müller cell line MIO-M1. Non-diabetic and streptozotocin-induced diabetic wild-type and Nrf2 knockout mice were evaluated for multiple DR endpoints. RESULTS: NRF2 was expressed prominently in Müller glial cells and astrocytes in both human and mouse retinas. In cultured MIO-M1 cells, NRF2 inhibition significantly decreased antioxidant gene expression and exacerbated tert-butyl hydroperoxide- and hydrogen peroxide-induced oxidative stress. NRF2 activation strongly increased NRF2 target gene expression and suppressed oxidant-induced reactive oxygen species. Diabetic mice exhibited retinal NRF2 activation, indicated by nuclear translocation. Superoxide levels were significantly increased by diabetes in Nrf2 knockout mice as compared with wild-type mice. Diabetic Nrf2 knockout mice exhibited a reduction in retinal glutathione and an increase in TNF-α protein compared with wild-type mice. Nrf2 knockout mice exhibited early onset of blood-retina barrier dysfunction and exacerbation of neuronal dysfunction in diabetes. CONCLUSIONS/INTERPRETATION: These results indicate that NRF2 is an important protective factor regulating the progression of DR and suggest enhancement of the NRF2 pathway as a potential therapeutic strategy.


Asunto(s)
Retinopatía Diabética/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Línea Celular , Retinopatía Diabética/genética , Humanos , Masculino , Ratones , Ratones Mutantes , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Retina/metabolismo , Retina/patología
15.
Mol Vis ; 20: 1740-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25593504

RESUMEN

PURPOSE: Chronic inflammation is a critical process in pterygium development and progression, including promotion of angiogenesis. Vascular endothelial cells (ECs) actively participate in and regulate inflammation. Pterygium research has uncovered multiple inflammatory cytokines that are upregulated, but there has been minimal focus on EC activation. The Receptor for Advanced Glycation Endproducts (RAGE), a major proinflammatory molecule expressed in the vascular endothelium and other cell types, is a major instigator of endothelial cell activation. In this study, we explored the hypothesis that RAGE is upregulated in ECs in pterygium. To this end, we examined RAGE expression and immunolocalization in human pterygium and normal conjunctival tissue, with a particular interest in assessing endothelial RAGE. METHODS: Pterygium specimens were obtained from 25 patients during surgery at the King Khaled Eye Specialist Hospital (KKESH). In the same patients, conjunctiva were obtained from the autograft during surgery. Tissue specimens were formalin-fixed and paraffin-embedded. Tissue sections were analyzed with immunohistochemistry with anti-RAGE antibody. Expression and localization of RAGE were evaluated in pterygium and corresponding conjunctiva. RESULTS: RAGE expression was detected in the vascular endothelium in all pterygium tissue specimens and most conjunctival specimens. Other cell types exhibited expression, notably epithelial cells, fibroblasts, and possibly macrophages. Strikingly, endothelial RAGE expression was increased in 19 of 25 pterygium tissue specimens, compared to the corresponding control conjunctiva. CONCLUSIONS: Our data reveal that RAGE expression is upregulated in vascular endothelial cells in pterygium. RAGE upregulation is an important mechanism by which endothelial cells amplify the overall inflammatory response, and suppression of RAGE has been shown to prevent the progression of some systemic disease processes in experimental models. This suggests that pharmacologic targeting of RAGE, which is already being attempted in clinical trials for some diseases, could be useful in treating pterygium.


Asunto(s)
Pterigion/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Conjuntiva/irrigación sanguínea , Conjuntiva/metabolismo , Conjuntiva/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Inmunohistoquímica , Inflamación/metabolismo , Inflamación/patología , Masculino , Persona de Mediana Edad , Pterigion/patología , Recurrencia , Regulación hacia Arriba
16.
Ophthalmol Sci ; 4(5): 100521, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006804

RESUMEN

Purpose: Hyperglycemia is a major risk factor for early lesions of diabetic retinal disease (DRD). Updating the DRD staging system to incorporate relevant basic and cellular mechanisms pertinent to DRD is necessary to better address early disease, disease progression, the use of therapeutic interventions, and treatment effectiveness. Design: We sought to review preclinical and clinical evidence on basic and cellular mechanisms potentially pertinent to DRD that might eventually be relevant to update the DRD staging system. Participants: Not applicable. Methods: The Basic and Cellular Mechanisms Working Group (BCM-WG) of the Mary Tyler Moore Vision Initiative carefully and extensively reviewed available preclinical and clinical evidence through multiple iterations and classified these. Main Outcome Measures: Classification was made into evidence grids, level of supporting evidence, and anticipated future relevance to DRD. Results: A total of 40 identified targets based on pathophysiology and other parameters for DRD were grouped into concepts or evaluated as specific candidates. VEGFA, peroxisome proliferator-activated receptor-alpha related pathways, plasma kallikrein, and angiopoietin 2 had strong agreement as promising for use as biomarkers in diagnostic, monitoring, predictive, prognostic, and pharmacodynamic responses as well as for susceptibility/risk biomarkers that could underlie new assessments and eventually be considered within an updated DRD staging system or treatment, based on the evidence and need for research that would fit within a 2-year timeline. The BCM-WG found there was strong reason also to pursue the following important concepts regarding scientific research of DRD acknowledging their regulation by hyperglycemia: inflammatory/cytokines, oxidative signaling, vasoprotection, neuroprotection, mitophagy, and nutrients/microbiome. Conclusion: Promising targets that might eventually be considered within an updated DRD staging system or treatment were identified. Although the BCM-WG recognizes that at this stage little can be incorporated into a new DRD staging system, numerous potential targets and important concepts deserve continued support and research, as they may eventually serve as biomarkers and/or therapeutic targets with measurable benefits to patients with diabetes. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

17.
Ophthalmol Sci ; 4(3): 100449, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313399

RESUMEN

Purpose: To review the evidence for imaging modalities in assessing the vascular component of diabetic retinal disease (DRD), to inform updates to the DRD staging system. Design: Standardized narrative review of the literature by an international expert workgroup, as part of the DRD Staging System Update Effort, a project of the Mary Tyler Moore Vision Initiative. Overall, there were 6 workgroups: Vascular Retina, Neural Retina, Systemic Health, Basic and Cellular Mechanisms, Visual Function, and Quality of Life. Participants: The Vascular Retina workgroup, including 16 participants from 4 countries. Methods: Literature review was conducted using standardized evidence grids for 5 modalities: standard color fundus photography (CFP), widefield color photography (WFCP), standard fluorescein angiography (FA), widefield FA (WFFA), and OCT angiography (OCTA). Summary levels of evidence were determined on a validated scale from I (highest) to V (lowest). Five virtual workshops were held for discussion and consensus. Main Outcome Measures: Level of evidence for each modality. Results: Levels of evidence for standard CFP, WFCP, standard FA, WFFA, and OCTA were I, II, I, I, and II respectively. Traditional vascular lesions on standard CFP should continue to be included in an updated staging system, but more studies are required before they can be used in posttreatment eyes. Widefield color photographs can be used for severity grading within the area covered by standard CFPs, although these gradings may not be directly interchangeable with each other. Evaluation of the peripheral retina on WFCP can be considered, but the method of grading needs to be clarified and validated. Standard FA and WFFA provide independent prognostic value, but the need for dye administration should be considered. OCT angiography has significant potential for inclusion in the DRD staging system, but various barriers need to be addressed first. Conclusions: This study provides evidence-based recommendations on the utility of various imaging modalities for assessment of the vascular component of DRD, which can inform future updates to the DRD staging system. Although new imaging modalities offer a wealth of information, there are still major gaps and unmet research needs that need to be addressed before this potential can be realized. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

18.
Am J Pathol ; 180(6): 2548-60, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22521302

RESUMEN

Ischemic retinopathies, including retinopathy of prematurity and diabetic retinopathy, are major causes of blindness. Both have two phases, vessel loss and consequent hypoxia-driven pathologic retinal neovascularization, yet relatively little is known about the transcription factors regulating these processes. Myocyte enhancer factor 2 (MEF2) C, a member of the MEF2 family of transcription factors that plays an important role in multiple developmental programs, including the cardiovascular system, seems to have a significant functional role in the vasculature. We, therefore, generated endothelial cell (EC)-specific MEF2C-deficient mice and explored the role of MEF2C in retinal vascularization during normal development and in a mouse model of oxygen-induced retinopathy. Ablation of MEF2C did not cause appreciable defects in normal retinal vascular development. However, MEF2C ablation in ECs suppressed vessel loss in oxygen-induced retinopathy and strongly promoted vascular regrowth, consequently reducing retinal avascularity. This finding was associated with suppression of pathologic retinal angiogenesis and blood-retinal barrier dysfunction. MEF2C knockdown in cultured retinal ECs using small-interfering RNAs rescued ECs from death and stimulated tube formation under stress conditions, confirming the endothelial-autonomous and antiangiogenic roles of MEF2C. HO-1 was induced by MEF2C knockdown in vitro and may play a role in the proangiogenic effect of MEF2C knockdown on retinal EC tube formation. Thus, MEF2C may play an antiangiogenic role in retinal ECs under stress conditions, and modulation of MEF2C may prevent pathologic retinal neovascularization.


Asunto(s)
Factores Reguladores Miogénicos/fisiología , Neovascularización Retiniana/fisiopatología , Vasos Retinianos/patología , Retinopatía de la Prematuridad/fisiopatología , Animales , Apoptosis/fisiología , Barrera Hematorretinal/fisiología , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Técnicas de Silenciamiento del Gen , Humanos , Recién Nacido , Factores de Transcripción MEF2 , Ratones , Ratones Noqueados , Ratones Transgénicos , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Estrés Oxidativo/fisiología , Oxígeno , ARN Interferente Pequeño/genética , Neovascularización Retiniana/genética , Neovascularización Retiniana/prevención & control , Vasos Retinianos/crecimiento & desarrollo , Vasos Retinianos/metabolismo , Retinopatía de la Prematuridad/patología
19.
20.
Blood ; 117(22): 5785-6, 2011 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-21636713

RESUMEN

In this issue of Blood, Joyal and colleagues make the insightful finding that Semaphorin3A (Sema3A) is secreted by hypoxic neurons in ischemic/avascular retina,thereby inhibiting vascular regeneration of the retina and enhancing pathologic preretinal neovascularization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA