Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell Neurosci ; 65: 82-91, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25724483

RESUMEN

Complement control protein (CCP) domains have adhesion properties and are commonly found in proteins that control the complement immune system. However, an increasing number of proteins containing CCP domains have been reported to display neuronal functions. Susd2 is a transmembrane protein containing one CCP domain. It was previously identified as a tumor-reversing protein, but has no characterized function in the CNS. The present study investigates the expression and function of Susd2 in the rat hippocampus. Characterization of Susd2 during development showed a peak in mRNA expression two weeks after birth. In hippocampal neuronal cultures, the same expression profile was observed at 15days in vitro for both mRNA and protein, a time consistent with synaptogenesis in our model. At the subcellular level, Susd2 was located on the soma, axons and dendrites, and appeared to associate preferentially with excitatory synapses. Inhibition of Susd2 by shRNAs led to decreased numbers of excitatory synaptic profiles, exclusively. Also, morphological parameters were studied on young (5DIV) developing neurons. After Susd2 inhibition, an increase in dendritic tree length but a decrease in axon elongation were observed, suggesting changes in adhesion properties. Our results demonstrate a dual role for Susd2 at different developmental stages, and raise the question whether Susd2 and other CCP-containing proteins expressed in the CNS could be function-related.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Hipocampo/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuritas/metabolismo , Neurogénesis , Sinapsis/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Células Cultivadas , Células HEK293 , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Humanos , Glicoproteínas de Membrana/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
2.
J Neurosci ; 32(13): 4632-44, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22457509

RESUMEN

Inhibitory synapses display a great diversity through varying combinations of presynaptic GABA and glycine release and postsynaptic expression of GABA and glycine receptor subtypes. We hypothesized that increased flexibility offered by this dual transmitter system might serve to tune the inhibitory phenotype to the properties of afferent excitatory synaptic inputs in individual cells. Vestibulocerebellar unipolar brush cells (UBC) receive a single glutamatergic synapse from a mossy fiber (MF), which makes them an ideal model to study excitatory-inhibitory interactions. We examined the functional phenotypes of mixed inhibitory synapses formed by Golgi interneurons onto UBCs in rat slices. We show that glycinergic IPSCs are present in all cells. An additional GABAergic component of large amplitude is only detected in a subpopulation of UBCs. This GABAergic phenotype is strictly anti-correlated with the expression of type II, but not type I, metabotropic glutamate receptors (mGluRs) at the MF synapse. Immunohistochemical stainings and agonist applications show that global UBC expression of glycine and GABA(A) receptors matches the pharmacological profile of IPSCs. Paired recordings of Golgi cells and UBCs confirm the postsynaptic origin of the inhibitory phenotype, including the slow kinetics of glycinergic components. These results strongly suggest the presence of a functional coregulation of excitatory and inhibitory phenotypes at the single-cell level. We propose that slow glycinergic IPSCs may provide an inhibitory tone, setting the gain of the MF to UBC relay, whereas large and fast GABAergic IPSCs may in addition control spike timing in mGluRII-negative UBCs.


Asunto(s)
Cerebelo/fisiología , Ácido Glutámico/fisiología , Inhibición Neural/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica/fisiología , Animales , Cerebelo/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Agonistas del GABA/farmacología , Agonistas del GABA/fisiología , Antagonistas del GABA/farmacología , Glicina/fisiología , Glicinérgicos/farmacología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/fisiología , Ácido Kaínico/farmacología , Masculino , Fibras Nerviosas/fisiología , Inhibición Neural/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Wistar , Receptores de Glicina/antagonistas & inhibidores , Receptores de Glicina/metabolismo , Receptores de Glutamato Metabotrópico/biosíntesis , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología
3.
J Neurosci ; 31(1): 3-14, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21209184

RESUMEN

Formation and stabilization of postsynaptic glycine receptor (GlyR) clusters result from their association with the polymerized scaffold protein gephyrin. At the cell surface, lateral diffusion and local trapping of GlyR by synaptic gephyrin clusters is one of the main factors controlling their number. However, the mechanisms regulating gephyrin/GlyR cluster sizes are not fully understood. To identify molecular binding partners able to control gephyrin cluster stability, we performed pull-down assays with full-length or truncated gephyrin forms incubated in a rat spinal cord extract, combined with mass spectrometric analysis. We found that heat shock cognate protein 70 (Hsc70), a constitutive member of the heat shock protein 70 (Hsp70) family, selectively binds to the gephyrin G-domain. Immunoelectron microscopy of mouse spinal cord sections showed that Hsc70 could be colocalized with gephyrin at inhibitory synapses. Furthermore, ternary Hsc70-gephyrin-GlyR coclusters were formed following transfection of COS-7 cells. Upon overexpression of Hsc70 in mouse spinal cord neurons, synaptic accumulation of gephyrin was significantly decreased, but GlyR amounts were unaffected. In the same way, Hsc70 inhibition increased gephyrin accumulation at inhibitory synapses without modifying GlyR clustering. Single particle tracking experiments revealed that the increase of gephyrin molecules reduced GlyR diffusion rates without altering GlyR residency at synapses. Our findings demonstrate that Hsc70 regulates gephyrin polymerization independently of its interaction with GlyR. Therefore, gephyrin polymerization and synaptic clustering of GlyR are uncoupled events.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Choque Térmico HSC70/fisiología , Proteínas de la Membrana/metabolismo , Adenosina Difosfato/farmacología , Animales , Células COS , Proteínas Portadoras/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Chlorocebus aethiops , Dendritas/metabolismo , Dendritas/ultraestructura , Relación Dosis-Respuesta a Droga , Proteínas Fluorescentes Verdes/genética , Proteínas del Choque Térmico HSC70/química , Proteínas del Choque Térmico HSC70/genética , Proteínas del Choque Térmico HSC70/ultraestructura , Inmunoprecipitación/métodos , Proteínas Luminiscentes/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Neuronas/metabolismo , Neuronas/ultraestructura , Polimerizacion/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Proteómica/métodos , Ratas , Receptores de Glicina/genética , Receptores de Glicina/ultraestructura , Médula Espinal/citología , Médula Espinal/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Transfección/métodos , Proteína Fluorescente Roja
4.
Elife ; 102021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878402

RESUMEN

Precise quantitative information about the molecular architecture of synapses is essential to understanding the functional specificity and downstream signaling processes at specific populations of synapses. Glycine receptors (GlyRs) are the primary fast inhibitory neurotransmitter receptors in the spinal cord and brainstem. These inhibitory glycinergic networks crucially regulate motor and sensory processes. Thus far, the nanoscale organization of GlyRs underlying the different network specificities has not been defined. Here, we have quantitatively characterized the molecular arrangement and ultra-structure of glycinergic synapses in spinal cord tissue using quantitative super-resolution correlative light and electron microscopy. We show that endogenous GlyRs exhibit equal receptor-scaffold occupancy and constant packing densities of about 2000 GlyRs µm-2 at synapses across the spinal cord and throughout adulthood, even though ventral horn synapses have twice the total copy numbers, larger postsynaptic domains, and more convoluted morphologies than dorsal horn synapses. We demonstrate that this stereotypic molecular arrangement is maintained at glycinergic synapses in the oscillator mouse model of the neuromotor disease hyperekplexia despite a decrease in synapse size, indicating that the molecular organization of GlyRs is preserved in this hypomorph. We thus conclude that the morphology and size of inhibitory postsynaptic specializations rather than differences in GlyR packing determine the postsynaptic strength of glycinergic neurotransmission in motor and sensory spinal cord networks.


Asunto(s)
Receptores de Glicina/fisiología , Receptores de Glicina/ultraestructura , Médula Espinal/fisiología , Médula Espinal/ultraestructura , Sinapsis/fisiología , Sinapsis/ultraestructura , Animales , Ratones , Estructura Molecular
5.
Elife ; 102021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33661101

RESUMEN

Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.


Asunto(s)
Proteínas Inactivadoras de Complemento/genética , Aprendizaje , Proteínas de la Membrana/genética , Actividad Motora/genética , Plasticidad Neuronal/genética , Animales , Proteínas Inactivadoras de Complemento/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones
6.
J Neurosci ; 25(28): 6490-8, 2005 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-16014710

RESUMEN

Corelease of GABA and glycine by mixed neurons is a prevalent mode of inhibitory transmission in the vertebrate hindbrain. However, little is known of the functional organization of mixed inhibitory networks. Golgi cells, the main inhibitory interneurons of the cerebellar granular layer, have been shown to contain GABA and glycine. We show here that, in the vestibulocerebellum, Golgi cells contact both granule cells and unipolar brush cells, which are excitatory relay interneurons for vestibular afferences. Whereas IPSCs in granule cells are mediated by GABA(A) receptors only, Golgi cell inhibition of unipolar brush cells is dominated by glycinergic currents. We further demonstrate that a single Golgi cell can perform pure GABAergic inhibition of granule cells and pure glycinergic inhibition of unipolar brush cells. This specialization results from the differential expression of GABA(A) and glycine receptors by target cells and not from a segregation of GABA and glycine in presynaptic terminals. Thus, postsynaptic selection of coreleased fast transmitters is used in the CNS to increase the diversity of individual neuronal outputs and achieve target-specific signaling in mixed inhibitory networks.


Asunto(s)
Corteza Cerebelosa/citología , Glicina/metabolismo , Interneuronas/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción , Animales , Potenciales Evocados/fisiología , Antagonistas de Receptores de GABA-A , Microscopía Confocal , Microscopía Fluorescente , Modelos Neurológicos , Técnicas de Placa-Clamp , Piridazinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/análisis , Receptores de Glicina/análisis , Receptores de Glicina/antagonistas & inhibidores , Estricnina/farmacología , Sinapsis/metabolismo
7.
PLoS One ; 11(2): e0148310, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26840625

RESUMEN

The dynamic exchange of neurotransmitter receptors at synapses relies on their lateral diffusion in the plasma membrane. At synapses located on dendritic spines this process is limited by the geometry of the spine neck that restricts the passage of membrane proteins. Biochemical compartmentalisation of the spine is believed to underlie the input-specificity of excitatory synapses and to set the scale on which functional changes can occur. Synaptopodin is located predominantly in the neck of dendritic spines, and is thus ideally placed to regulate the exchange of synaptic membrane proteins. The central aim of our study was to assess whether the presence of synaptopodin influences the mobility of membrane proteins in the spine neck and to characterise whether this was due to direct molecular interactions or to spatial constraints that are related to the structural organisation of the neck. Using single particle tracking we have identified a specific effect of synaptopodin on the diffusion of metabotropic mGluR5 receptors in the spine neck. However, super-resolution STORM/PALM imaging showed that this was not due to direct interactions between the two proteins, but that the presence of synaptopodin is associated with an altered local organisation of the F-actin cytoskeleton, that in turn could restrict the diffusion of membrane proteins with large intracellular domains through the spine neck. This study contributes new data on the way in which the spine neck compartmentalises excitatory synapses. Our data complement models that consider the impact of the spine neck as a function of its shape, by showing that the internal organisation of the neck imposes additional physical barriers to membrane protein diffusion.


Asunto(s)
Membrana Celular/metabolismo , Espinas Dendríticas/metabolismo , Proteínas de Microfilamentos/metabolismo , Modelos Biológicos , Receptor del Glutamato Metabotropico 5/metabolismo , Animales , Membrana Celular/genética , Células Cultivadas , Espinas Dendríticas/genética , Proteínas de Microfilamentos/genética , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5/genética
8.
Front Mol Neurosci ; 2: 28, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20161805

RESUMEN

Regulation of synaptic transmission is essential to tune individual-to-network neuronal activity. One way to modulate synaptic strength is to regulate neurotransmitter receptor numbers at postsynaptic sites. This can be achieved either through plasma membrane insertion of receptors derived from intracellular vesicle pools, a process depending on active cytoskeleton transport, or through surface membrane removal via endocytosis. In parallel, lateral diffusion events along the plasma membrane allow the exchange of receptor molecules between synaptic and extrasynaptic compartments, contributing to synaptic strength regulation. In recent years, results obtained from several groups studying glycine receptor (GlyR) trafficking and dynamics shed light on the regulation of synaptic GlyR density. Here, we review (i) proteins and mechanisms involved in GlyR cytoskeletal transport, (ii) the diffusion dynamics of GlyR and of its scaffolding protein gephyrin that control receptor numbers, and its relationship with synaptic plasticity, and (iii) adaptative changes in GlyR diffusion in response to global activity modifications, as a homeostatic mechanism.

9.
Mol Cell Neurosci ; 19(2): 152-64, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11860269

RESUMEN

We have identified a cytoplasmic LIM protein, Ajuba, which interacts with the amino terminus of GLT-1, the most abundant plasma membrane glutamate transporter in the brain. Ajuba has a cytoplasmic location when expressed alone in COS cells, but translocates to colocalize with GLT-1 at the plasma membrane when GLT-1 is coexpressed. Ajuba is expressed in cerebellum, cortex, hippocampus, and retina and also in organs outside the CNS. Ajuba is found with GLT-1 in astrocytes, cerebellar Bergmann glia and retinal neurons, and antibodies to Ajuba coimmunoprecipitate GLT-1 from brain. For GLT-1 expressed in COS cells, coexpression of Ajuba did not affect the transporter's K(m) or V(max) for glutamate. Since Ajuba is known to activate MAP kinase enzymes, and its homologue Zyxin binds to cytoskeletal proteins, we propose that Ajuba is a scaffolding protein allowing GLT-1 to regulate intracellular signaling or interact with the cytoskeleton.


Asunto(s)
Encéfalo/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Proteínas de Homeodominio/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Envejecimiento/metabolismo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Células COS , Cerebelo/citología , Cerebelo/metabolismo , Clonación Molecular , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Hipocampo/citología , Hipocampo/metabolismo , Inmunohistoquímica , Canales Iónicos/efectos de los fármacos , Canales Iónicos/metabolismo , Proteínas con Dominio LIM , Datos de Secuencia Molecular , Neuroglía/citología , Neuronas/citología , Estructura Terciaria de Proteína/fisiología , Ratas , Retina/citología , Retina/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Vísceras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA