Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 318(4): H1018-H1027, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32167780

RESUMEN

Preeclampsia is a pregnancy-related disorder characterized by hypertension, vascular dysfunction and an increase in circulating inflammatory factors including the cytokine, tumor necrosis factor-α (TNF-α). Studies have shown that placental ischemia is associated with 1) increased circulating TNF-α, 2) attenuated pressure-induced cerebral vascular tone, and 3) suppression of ß-epithelial Na+ channel (ßENaC) protein in cerebral vessels. In addition to its role in epithelial Na+ and water transport, ßENaC is an essential signaling element in transduction of pressure-induced (aka "myogenic") constriction, a critical mechanism of blood flow autoregulation. While cytokines inhibit expression of certain ENaC proteins in epithelial tissue, it is unknown if the increased circulating TNF-α associated with placental ischemia mediates the loss of cerebrovascular ßENaC and cerebral blood flow regulation. Therefore, the purpose of this study was to test the hypothesis that increasing plasma TNF-α in normal pregnant rats reduces cerebrovascular ßENaC expression and impairs cerebral blood flow (CBF) regulation. In vivo TNF-α infusion (200 ng/day, 5 days) inhibited cerebrovascular expression of ßENaC and impaired CBF regulation in pregnant rats. To determine the direct effects of TNF-α and underlying pathways mediating vascular smooth muscle cell ßENaC reduction, we exposed cultured VSMCs (A10 cell line) to TNF-α (1-100 ng/mL) for 16-24 h. TNF-α reduced ßENaC protein expression in a concentration-dependent fashion from 0.1 to 100 ng/mL, without affecting cell death. To assess the role of canonical MAPK signaling in this response, VSMCs were treated with p38MAPK or c-Jun kinase (JNK) inhibitors in the presence of TNF-α. We found that both p38MAPK and JNK blockade prevented TNF-α-mediated ßENaC protein suppression. These data provide evidence that disorders associated with increased circulating TNF-α could lead to impaired cerebrovascular regulation, possibly due to reduced ßENaC-mediated vascular function.NEW & NOTEWORTHY This manuscript identifies TNF-α as a possible placental-derived cytokine that could be involved in declining cerebrovascular health observed in preeclampsia. We found that infusion of TNF-α during pregnancy impaired cerebral blood flow control in rats at high arterial pressures. We further discovered that cerebrovascular ß-epithelial sodium channel (ßENaC) protein, a degenerin protein involved in mechanotransduction, was reduced by TNF-α in pregnant rats, indicating a potential link between impaired blood flow and this myogenic player. We next examined this effect in vitro using a rat vascular smooth muscle cell line. TNF-α reduced ßENaC through canonical MAPK-signaling pathways and was not dependent on cell death. This study demonstrates the pejorative effects of TNF-α on cerebrovascular function during pregnancy and warrants future investigations to study the role of cytokines on vascular function during pregnancy.


Asunto(s)
Circulación Cerebrovascular , Canales Epiteliales de Sodio/metabolismo , Músculo Liso Vascular/metabolismo , Preeclampsia/etiología , Factor de Necrosis Tumoral alfa/sangre , Animales , Presión Sanguínea , Línea Celular , Células Cultivadas , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/metabolismo , Canales Epiteliales de Sodio/genética , Femenino , Homeostasis , Sistema de Señalización de MAP Quinasas , Músculo Liso Vascular/efectos de los fármacos , Embarazo , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/farmacología
2.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331392

RESUMEN

Degenerin proteins, such as the beta epithelial Na+ channel (ßENaC), are essential in the intracellular signaling of pressure-induced constriction, an important vascular smooth muscle cell (VSMC) function. While certain cytokines reduce ENaC protein in epithelial tissue, it is unknown if interleukin-17 (IL-17), a potent pro-inflammatory cytokine, directly mediates changes in membrane-associated ßENaC in VSMCs. Therefore, we tested the hypothesis that exposure to IL-17 reduces ßENaC in VSMCs through canonical mitogen-activated protein kinase (MAPK) signaling pathways. We treated cultured rat VSMCs (A10 cell line) with IL-17 (1-100 ng/mL) for 15 min to 16 h and measured expression of ßENaC, p38MAPK, c-jun kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). IL-17 reduced ßENaC protein expression in a concentration-dependent fashion and increased phosphorylation of p38MAPK by 15 min and JNK by 8 h. NFκB was unaffected by IL-17 in VSMCs. IL-17 treatment reduced VSMC viability but had no effect on cell death. To determine the underlying signaling pathway involved in this response, VSMCs were treated before and during IL-17 exposure with p38MAPK or JNK inhibitors. We found that JNK blockade prevented IL-17-mediated ßENaC protein suppression. These data demonstrate that the pro-inflammatory cytokine IL-17 regulates VSMC ßENaC via canonical MAPK signaling pathways, raising the possibility that ßENaC-mediated loss of VSMC function may occur in inflammatory disorders.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Interleucina-17/metabolismo , Sistema de Señalización de MAP Quinasas , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Línea Celular , Células Cultivadas , Canales Epiteliales de Sodio/genética , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-17/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/metabolismo , Fosforilación , Ratas
3.
Dev Biol ; 423(2): 126-137, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28159525

RESUMEN

Vestibular hair cells of the inner ear are specialized receptors that detect mechanical stimuli from gravity and motion via the deflection of a polarized bundle of stereocilia located on their apical cell surfaces. The orientation of stereociliary bundles is coordinated between neighboring cells by core PCP proteins including the large adhesive G-protein coupled receptor Celsr1. We show that mice lacking Celsr1 have vestibular behavioral phenotypes including circling. In addition, we show that Celsr1 is asymmetrically distributed at cell boundaries between hair cells and neighboring supporting cells in the developing vestibular and auditory sensory epithelia. In the absence of Celsr1 the stereociliary bundles of vestibular hair cells are misoriented relative to their neighbors, a phenotype that is greatest in the cristae of the semicircular canals. Since horizontal semi-circular canal defects lead to circling in other mutant mouse lines, we propose that this PCP phenotype is the cellular basis of the circling behavior in Celsr1 mutants.


Asunto(s)
Polaridad Celular , Oído Interno/citología , Oído Interno/embriología , Células Ciliadas Vestibulares/citología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Conducta Animal , Oído Interno/metabolismo , Epitelio/metabolismo , Eliminación de Gen , Ratones Noqueados , Órgano Espiral/citología , Órgano Espiral/embriología , Órgano Espiral/metabolismo , Fenotipo , Transducción de Señal , Estereocilios/metabolismo
4.
J Appl Toxicol ; 37(9): 1053-1064, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28337774

RESUMEN

Although nanomaterials have the potential to improve human life, their sideline effects on human health seem to be inevitable and still are unknown. Some studies have investigated the genotoxicity of alumina nanoparticles (AlNPs); however, this effect is still unclear due to insufficient evaluation and conflicting results. Using a battery of standard genotoxic assays, the present study offers evidence of the genotoxicity associated with aluminum oxide (alumina) at NP sizes of 50 and 13 nm, when compared with bulk alumina (10 µm). The genotoxicity induced by alumina at bulk and NP sizes was evaluated with Ames test, comet test, micronucleus assay and sperm deformity test. The mechanism related to the induction of reactive oxygen species was explored as well. Our results showed that AlNPs (13 and 50 nm) were able to enter cells and induced DNA damage, micronucleus in bone marrow, sperm deformation and reactive oxygen species induction in a time-, dose- and size-dependent manner. Therefore, we conclude that AlNPs (13 and 50 nm), rather than bulk alumina, induce markers of genotoxicity in mice, with oxidative stress as a potential mechanism driving these genotoxic effects. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Óxido de Aluminio/toxicidad , Daño del ADN/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Animales , Ensayo Cometa , Cricetinae , Relación Dosis-Respuesta a Droga , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Concentración 50 Inhibidora , Pulmón/citología , Pulmón/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Ratones Endogámicos ICR , Pruebas de Micronúcleos , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Salmonella typhimurium/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Testículo/efectos de los fármacos , Testículo/patología
5.
Int J Mol Sci ; 18(3)2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28264495

RESUMEN

Preeclampsia (PE) is a disorder of pregnancy typically characterized by new onset hypertension after gestational week 20 and proteinuria. Although PE is one of the leading causes of maternal and perinatal morbidity and death worldwide, the mechanisms of the pathogenesis of the disease remain unclear and treatment options are limited. However, there is increasing evidence to suggest that endothelin-1 (ET-1) plays a critical role in the pathophysiology of PE. Multiple studies report that ET-1 is increased in PE and some studies report a positive correlation between ET-1 and the severity of symptoms. A number of experimental models of PE are also associated with elevated tissue levels of prepro ET-1 mRNA. Moreover, experimental models of PE (placental ischemia, sFlt-1 infusion, Tumor necrosis factor (TNF) -α infusion, and Angiotensin II type 1 receptor autoantibody (AT1-AA) infusion) have proven to be susceptible to Endothelin Type A (ETA) receptor antagonism. While the results are promising, further work is needed to determine whether ET antagonists could provide an effective therapy for the management of preeclampsia.


Asunto(s)
Antagonistas de los Receptores de la Endotelina A/farmacología , Antagonistas de los Receptores de la Endotelina A/uso terapéutico , Preeclampsia/tratamiento farmacológico , Preeclampsia/metabolismo , Receptor de Endotelina A/metabolismo , Animales , Modelos Animales de Enfermedad , Endotelinas/genética , Endotelinas/metabolismo , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Femenino , Humanos , Terapia Molecular Dirigida , Preeclampsia/diagnóstico , Preeclampsia/etiología , Embarazo , Receptor de Endotelina A/genética , Transducción de Señal
6.
Alcohol Clin Exp Res ; 40(11): 2320-2328, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27647657

RESUMEN

BACKGROUND: Ethanol (EtOH) neurotoxicity can result in devastating effects on brain and behavior by disrupting homeostatic signaling cascades and inducing cell death. One such mechanism involves double-stranded RNA activated protein kinase (PKR), a primary regulator of protein translation and cell viability in the presence of a virus or other external stimuli. EtOH-mediated up-regulation of interferon-gamma (IFN-γ; the oxidative stress-inducible regulator of PKR), PKR, and its target, p53, are still being fully elucidated. METHODS: Using Western blot analysis, immunofluorescence, and linear regression analyses, changes in the IFN-γ-PKR-p53 pathway following chronic EtOH treatment in the frontal cortex of rodents were examined. The role of PKR on cell viability was also assessed in EtOH-treated cells using PKR overexpression vector and PKR inhibitor (PKRI). RESULTS: In rats chronically fed EtOH, PKR, phosphorylated PKR (p-PKR), IFN-γ, and p53 were significantly increased following chronic EtOH exposure. Linear regression revealed a significant correlation between IFN-γ and p-PKR protein levels, as well as p-PKR expression and age of EtOH exposure. Overexpression of PKR resulted in greater cell death, while use of PKRI enhanced cell viability in EtOH-treated cells. CONCLUSIONS: Chronic EtOH exposure activates the IFN-γ-PKR-p53 pathway in the frontal cortex of rodents. p-PKR expression is greater in brains of rodents exposed to EtOH at earlier ages compared to later life, suggesting a mechanism by which young brains could be more susceptible to EtOH-related brain injury. PKR and p-PKR were also colocalized in neurons and astrocytes of rats. This study provides additional insight into biochemical mechanisms underlying alcohol use disorder related neuropathology and warrants further investigation of PKR as a potential pharmacotherapeutic target to combat EtOH-related neurotoxicity, loss of protein translation and brain injury.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Interferón gamma/metabolismo , Corteza Prefrontal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , eIF-2 Quinasa/metabolismo , Edad de Inicio , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Masculino , Corteza Prefrontal/metabolismo , Distribución Aleatoria , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
7.
Alcohol Clin Exp Res ; 39(3): 476-84, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25704249

RESUMEN

BACKGROUND: Brain cell death is a major pathological consequence of alcohol neurotoxicity. However, the molecular cascades in alcohol-induced brain tissue injury are unclear. METHODS: Using Western blot and double immunofluorescence, we examined the expression of interferon (IFN)-induced protein kinase R (PKR), phosphorylated-PKR (p-PKR), and IFN gamma (IFNγ) in the prefrontal cortex (PFC) of postmortem brains from subjects with alcohol use disorders (AUD). RESULTS: The protein levels of PKR, p-PKR, and IFNγ were significantly increased in subjects with AUD compared with control subjects without AUD, and a younger age of onset of AUD was significantly correlated with higher protein levels of p-PKR. In addition, elevated PKR- and p-PKR-IR were observed in both neurons and astrocytes in the PFC of subjects with AUD compared to subjects without AUD. CONCLUSIONS: The activation of the IFNγ-PKR pathway in PFC of humans is associated with chronic excessive ethanol use with an age of onset dependent manner, and activation of this pathway may play a pivotal role in AUD-related brain tissue injury. This study provides insight into neurodegenerative key factors related to AUD and identifies potential targets for the treatment of alcohol-induced neurotoxicity.


Asunto(s)
Trastornos Relacionados con Alcohol/metabolismo , Interferón gamma/biosíntesis , Corteza Prefrontal/metabolismo , Transducción de Señal , eIF-2 Quinasa/biosíntesis , Adulto , Trastornos Relacionados con Alcohol/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Prefrontal/patología , Transducción de Señal/fisiología
8.
J Neurosci ; 33(35): 14001-16, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23986237

RESUMEN

The distinctive planar polarity of auditory hair cells is evident in the polarized organization of the stereociliary bundle. Mutations in the core planar cell polarity gene Van Gogh-like 2 (Vangl2) result in hair cells that fail to properly orient their stereociliary bundles along the mediolateral axis of the cochlea. The severity of this phenotype is graded along the length of the cochlea, similar to the hair cell differentiation gradient, suggesting that an active refinement process corrects planar polarity phenotypes in Vangl2 knock-out (KO) mice. Because Vangl2 gene deletions are lethal, Vangl2 conditional knock-outs (CKOs) were generated to test this hypothesis. When crossed with Pax2-Cre, Vangl2 is deleted from the inner ear, yielding planar polarity phenotypes similar to Vangl2 KOs at late embryonic stages except that Vangl2 CKO mice are viable and do not have craniorachischisis like Vangl2 KOs. Quantification of planar polarity deficits through postnatal development demonstrates the activity of a Vangl2-independent refinement process that rescues the planar polarity phenotype within 10 d of birth. In contrast, the Pax2-Cre;Vangl2 CKO has profound changes in the shape and distribution of outer pillar cell and Deiters' cell phalangeal processes that are not corrected during the period of planar polarity refinement. Auditory brainstem response analyses of adult mice show a 10-15 dB shift in auditory threshold, and distortion product otoacoustic emission measurements indicate that this mild hearing deficit is of cochlear origin. Together, these data demonstrate a Vangl2-independent refinement mechanism that actively reorients auditory stereociliary bundles and reveals an unexpected role of Vangl2 during supporting cell morphogenesis.


Asunto(s)
Células Ciliadas Auditivas/citología , Proteínas del Tejido Nervioso/genética , Animales , Umbral Auditivo , Tronco Encefálico/fisiología , Diferenciación Celular , Cóclea/citología , Cóclea/embriología , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiología , Pérdida Auditiva/genética , Ratones , Ratones Noqueados , Fenotipo , Estereocilios/ultraestructura
9.
Alcohol Clin Exp Res ; 38(2): 401-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24428663

RESUMEN

BACKGROUND: Alcohol (EtOH [ethanol]) is an antinociceptive agent, working in part, by reducing sensitivity to painful stimuli. The transcription factor Kruppel-like factor 11 (KLF11), a human diabetes-causing gene that also regulates the neurotransmitter metabolic enzymes monoamine oxidase (MAO), has recently been identified as an EtOH-inducible gene. However, its role in antinociception remains unknown. Consequently, we investigated the function of KLF11 in chronic EtOH-induced antinociception using a genetically engineered knockout mouse model. METHODS: Wild-type (Klf11(+/+) ) and KLF11 knockout (Klf11(-/-) ) mice were fed a liquid diet containing EtOH for 28 days with increasing amounts of EtOH from 0% up to a final concentration of 6.4%, representing a final diet containing 36% of calories primarily from EtOH. Control mice from both genotypes were fed liquid diet without EtOH for 28 days. The EtOH-induced antinociceptive effect was determined using the tail-flick test before and after EtOH exposure (on day 29). In addition, the enzyme activity and mRNA levels of MAO A and MAO B were measured by real-time RT-PCR and enzyme assays, respectively. RESULTS: EtOH produced an antinociceptive response to thermal pain in Klf11(+/+) mice, as expected. In contrast, deletion of KLF11 in the Klf11(-/-) mice abolished the EtOH-induced antinociceptive effect. The mRNA and protein levels of KLF11 were significantly increased in the brain prefrontal cortex of Klf11(+/+) mice exposed to EtOH compared with control Klf11(+/+) mice. Furthermore, MAO enzyme activities were affected differently in Klf11 wild-type versus Klf11 knockout mice exposed to chronic EtOH. Chronic EtOH intake significantly increased MAO B activity in Klf11(+/+) mice. CONCLUSIONS: The data show KLF11 modulation of EtOH-induced antinociception. The KLF11-targeted MAO B enzyme may contribute more significantly to EtOH-induced antinociception. Thus, this study revealed a new role for the KLF11 gene in the mechanisms underlying the antinociceptive effects of chronic EtOH exposure.


Asunto(s)
Alcoholismo/genética , Alcoholismo/psicología , Analgésicos , Depresores del Sistema Nervioso Central/farmacología , Proteínas de Unión al ADN/fisiología , Diabetes Mellitus/genética , Etanol/farmacología , Nocicepción/efectos de los fármacos , Factores de Transcripción/fisiología , Animales , Proteínas Reguladoras de la Apoptosis , Western Blotting , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Masculino , Ratones , Ratones Noqueados , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Dimensión del Dolor/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/enzimología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Tiempo de Reacción/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
10.
Evol Dev ; 15(1): 63-79, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23331918

RESUMEN

The tetrapod auditory system transmits sound through the outer and middle ear to the organ of Corti or other sound pressure receivers of the inner ear where specialized hair cells translate vibrations of the basilar membrane into electrical potential changes that are conducted by the spiral ganglion neurons to the auditory nuclei. In other systems, notably the vertebrate limb, a detailed connection between the evolutionary variations in adaptive morphology and the underlying alterations in the genetic basis of development has been partially elucidated. In this review, we attempt to correlate evolutionary and partially characterized molecular data into a cohesive perspective of the evolution of the mammalian organ of Corti out of the tetrapod basilar papilla. We propose a stepwise, molecularly partially characterized transformation of the ancestral, vestibular developmental program of the vertebrate ear. This review provides a framework to decipher both discrete steps in development and the evolution of unique functional adaptations of the auditory system. The combined analysis of evolution and development establishes a powerful cross-correlation where conclusions derived from either approach become more meaningful in a larger context which is not possible through exclusively evolution or development centered perspectives. Selection may explain the survival of the fittest auditory system, but only developmental genetics can explain the arrival of the fittest auditory system. [Modified after (Wagner 2011)].


Asunto(s)
Evolución Biológica , Órgano Espiral/fisiología , Vertebrados/fisiología , Animales , Cóclea/fisiología , Análisis Mutacional de ADN , Biología Evolutiva , Oído/fisiología , Evolución Molecular , Células Ciliadas Auditivas Internas/fisiología , Audición , Ratones , Filogenia , Ganglio Espiral de la Cóclea/fisiología
11.
Sci Rep ; 13(1): 12573, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537240

RESUMEN

It has previously been shown that the zinc-finger transcription factor Gata3 has dynamic expression within the inner ear throughout embryonic development and is essential for cochlear neurosensory development. However, the temporal window for which Gata3 is required for proper formation of the cochlear neurosensory epithelia remains unclear. To investigate the role of Gata3 in cochlear neurosensory development in the late prosensory stages, we used the Sox2-creERT2 mouse line to target and conditionally delete Gata3 at E11.5, a timepoint before cells have fully committed to a neurosensory fate. While the inner ears of Sox2-creERT2: Gata3 f/f mice appear normal with no gross structural defects, the sensory cells in the organ of Corti are partially lost and disorganized in an increasing severity from base to apex. Additionally, spiral ganglion neurons display aberrant peripheral projections, including increased distances between radial bundles and disorganization upon reaching the organ of Corti. Furthermore, heterozygous Sox2-creERT2: Gata3 f/+ mice show a reduced aberrant phenotype in comparison to the homozygous mutant, supporting the hypothesis that Gata3 is not only required for proper formation at the later proneurosensory stage, but also that a specific expression level of Gata3 is required. Therefore, this study provides evidence that Gata3 plays a time-sensitive and dose-dependent role in the development of sensory and neuronal cells in late proneurosensory stages.


Asunto(s)
Oído Interno , Factor de Transcripción GATA3 , Animales , Ratones , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Ratones Noqueados , Oído Interno/metabolismo , Cóclea/metabolismo , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica
12.
Res Sq ; 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37090645

RESUMEN

It has been previously shown that zinc-finger transcription factor Gata3 has dynamic expression within the inner ear throughout embryonic development and is essential for cochlear neurosensory development. However, the temporal window to which Gata3 is required for the formation of the cochlear neurosensory epithelia remains unclear. To investigate the role of Gata3 on cochlear neurosensory development in the late prosensory stages, we used the Sox2-cre ERT2 mouse line to target and conditionally delete Gata3 at E11.5 before the cells have fully committed to a neurosensory fate. While the inner ears of Sox2-cre ERT2 : Gata3 f/f mice appear morphologically normal, the sensory cells in the organ of Corti are partially lost and disorganized in a basal to apical gradient with the apex demonstrating the more severe phenotype. Additionally, spiral ganglion neurons display aberrant peripheral projections, such as increased distances between radial bundles and disorganization upon reaching the organ of Corti. Furthermore, heterozygous Sox2-cre ERT2 : Gata3 f/+ mice show a reduced phenotype in comparison to the homozygous mutant, supporting the concept that Gata3 is not only required for proper formation at the later proneurosensory stage, but also that a specific level of Gata3 is required. Therefore, our studies confirm that Gata3 plays a time-sensitive and dose-dependent role in the development of sensory cells in the late proneurosensory stages.

13.
Adv Exp Med Biol ; 739: 173-86, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22399402

RESUMEN

We review the molecular basis of auditory development and evolution. We propose that the auditory periphery (basilar papilla, organ of Corti) evolved by transforming a newly created and redundant vestibular (gravistatic) endorgan into a sensory epithelium that could respond to sound instead of gravity. Evolution altered this new epithelia's mechanoreceptive properties through changes of hair cells, positioned the epithelium in a unique position near perilymphatic space to extract sound moving between the round and the oval window, and transformed its otolith covering into a tympanic membrane. Another important step in the evolution of an auditory system was the evolution of a unique set of "auditory neurons" that apparently evolved from vestibular neurons. Evolution of mammalian auditory (spiral ganglion) neurons coincides with GATA3 being a transcription factor found selectively in the auditory afferents. For the auditory information to be processed, the CNS required a dedicated center for auditory processing, the auditory nuclei. It is not known whether the auditory nucleus is ontogenetically related to the vestibular or electroreceptive nuclei, two sensory systems found in aquatic but not in amniotic vertebrates, or a de-novo formation of the rhombic lip in line with other novel hindbrain structures such as pontine nuclei. Like other novel hindbrain structures, the auditory nuclei express exclusively the bHLH gene Atoh1, and loss of Atoh1 results in loss of most of this nucleus in mice. Only after the basilar papilla, organ of Corti evolved could efferent neurons begin to modulate their activity. These auditory efferents most likely evolved from vestibular efferent neurons already present. The most simplistic interpretation of available data suggest that the ear, sensory neurons, auditory nucleus, and efferent neurons have been transformed by altering the developmental genetic modules necessary for their development into a novel direction conducive for sound extraction, conduction, and processing.


Asunto(s)
Evolución Molecular , Vestíbulo del Laberinto/crecimiento & desarrollo , Animales , Epitelio/metabolismo , Humanos , Neuronas Eferentes/citología , Células Receptoras Sensoriales/citología , Vestíbulo del Laberinto/citología , Vestíbulo del Laberinto/fisiología
14.
Front Neurosci ; 15: 779871, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153658

RESUMEN

During development the afferent neurons of the inner ear make precise wiring decisions in the hindbrain reflective of their topographic distribution in the periphery. This is critical for the formation of sensory maps capable of faithfully processing both auditory and vestibular input. Disorganized central projections of inner ear afferents in Fzd3 null mice indicate Wnt/PCP signaling is involved in this process and ear transplantation in Xenopus indicates that Fzd3 is necessary in the ear but not the hindbrain for proper afferent navigation. However, it remains unclear in which cell type of the inner ear Fzd3 expression is influencing the guidance of inner ear afferents to their proper synaptic targets in the hindbrain. We utilized Atoh1-cre and Neurod1-cre mouse lines to conditionally knockout Fzd3 within the mechanosensory hair cells of the organ of Corti and within the inner ear afferents, respectively. Following conditional deletion of Fzd3 within the hair cells, the central topographic distribution of inner ear afferents was maintained with no gross morphological defects. In contrast, conditional deletion of Fzd3 within inner ear afferents leads to central pathfinding defects of both cochlear and vestibular afferents. Here, we show that Fzd3 is acting in a cell autonomous manner within inner ear afferents to regulate central pathfinding within the hindbrain.

15.
Pregnancy Hypertens ; 24: 50-57, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33677419

RESUMEN

Preeclampsia affects 5-8% of pregnancies and is characterized by hypertension, placental ischemia, neurological impairment, and an increase in circulating inflammatory cytokines, including Interleukin-17 (IL17). While placental ischemia has also been shown to impair cerebrovascular function, it is not known which placental-associated factor(s) drive this effect. The purpose of this study was to examine the effects of IL17 on cerebrovascular function during pregnancy. To achieve this goal, pregnant rats were infused with either IL17 (150 pg/day, 5 days, osmotic minipump), or vehicle (saline/0.7% BSA osmotic minipump) starting at gestational day (GD) 14. On GD 19, the cerebral blood flow (CBF) response to increases in mean arterial pressure (MAP) was measured in vivo, and myogenic constrictor responses of the middle cerebral artery (MCA) were assessed ex vivo. IL17 increased MAP but impaired CBF responses only at the highest arterial pressure measured (190 mmHg). Myogenic constrictor responses overall were mostly unaffected by IL17 infusion; however, the intraluminal pressure at which peak myogenic tone was generated was lower in the IL17 infused group (120 vs 165 mm Hg), suggesting maximal tone is exerted at lower intraluminal pressures in IL17-treated pregnant rats. Consistent with the lack of substantial change in overall myogenic responsiveness, there was no difference in cerebral vessel expression of putative mechanosensitive protein ßENaC, but a tendency towards a decrease in ASIC2 (p = 0.067) in IL17 rats. This study suggests that infusion of IL17 independent of other placental ischemia-associated factors is insufficient to recapitulate the features of impaired cerebrovascular function during placental ischemia. Further studies to examine of the role of other pro-inflammatory cytokines, individually or a combination, are necessary to determine mechanisms of cerebral vascular dysfunction during preeclampsia.


Asunto(s)
Circulación Cerebrovascular , Hipertensión/fisiopatología , Interleucina-17/farmacología , Arteria Cerebral Media/efectos de los fármacos , Preeclampsia/etiología , Canales Iónicos Sensibles al Ácido/metabolismo , Canales Iónicos Sensibles al Ácido/farmacología , Animales , Presión Sanguínea , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/metabolismo , Circulación Cerebrovascular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Interleucina-17/metabolismo , Arteria Cerebral Media/metabolismo , Embarazo , Ratas Sprague-Dawley
16.
Pregnancy Hypertens ; 23: 11-17, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33161224

RESUMEN

BACKGROUND: The flavonoid, luteolin, promotes vasorelaxation in various arteries through endothelial-dependent and independent mechanisms. Although there is growing interest in the vasoactive effects of flavonoids on maternal vascular function during pregnancy, it is unknown whether luteolin elicits vasorelaxation in the uterine circulation. We tested the hypothesis that luteolin induces vasorelaxation via endothelial-dependent mechanisms in uterine arteries from normal pregnant rats during late gestation. METHODS: Uterine arteries and aortas were isolated from Sprague-Dawley rats at gestational day 19 and prepared for wire myography. RESULTS: The potency of luteolin-induced vasorelaxation was examined between uterine arteries and the aortas. By 50 µM of luteolin, there was complete relaxation (100.5 ± 5.2%) in uterine arteries as compared to aortas (27.5 ± 10.0%). Even the highest concentration of 100 µM luteolin produced less than half relaxation (43.6 ± 8.6%) in aortas compared to uterine arteries. We then explored if luteolin-induced vasorelaxation in uterine arteries from pregnant rats was mediated by endothelial-dependent vasorelaxation pathways, including nitric oxide synthase (NOS), cyclooxygenase (COX), or potassium (K+) channels. Blocking these pathways with N(G)-Nitro-l-arginine methyl ester hydrochloride (L-NAME), indomethacin, or tetraethylammonium (TEA)/high potassium chloride (KCl), respectively, did not alter luteolin responses in uterine arteries from pregnant rats. These findings suggested that endothelial factors may not mediate luteolin-induced vasorelaxation in uterine arteries during pregnancy. Indeed, experiments where the endothelium was removed did not alter luteolin-induced vasorelaxation in uterine arteries during pregnancy. CONCLUSIONS: Luteolin directly promotes vasorelaxation in the medial smooth muscle layer of uterine arteries during normal pregnancy.


Asunto(s)
Luteolina/farmacología , Arteria Uterina/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Animales , Aorta/efectos de los fármacos , Femenino , Humanos , Preeclampsia/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley
17.
Hypertens Pregnancy ; 39(4): 451-460, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33119997

RESUMEN

Introduction:Women with preeclampsia (PE) and reduced uterine perfusion pressure (RUPP) pre-clinical rat model of PE have elevated angiotensin II type 1 receptor agonistic autoantibodies (AT1-AA) and cerebrovascular dysfunction. Methods:Sprague Dawley rats had RUPP surgery with/without AT1-AA inhibitor ('n7AAc'144 µg/day) osmotic minipumps. Mean arterial pressure (MAP), CBF autoregulation, blood brain barrier (BBB) permeability, cerebral edema, oxidative stress, and eNOS were assessed. Results:'n7AAc' improved MAP, restored CBF autoregulation, prevented cerebral edema, elevated oxidative stress, and increased phosphorylated eNOS protein in RUPP rats. Conclusion:Inhibiting the AT1-AA in placental ischemic rats prevents hypertension, cerebrovascular dysfunction, and improves cerebral metabolic function.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Homeostasis/efectos de los fármacos , Preeclampsia/tratamiento farmacológico , Receptor de Angiotensina Tipo 1/inmunología , Animales , Autoanticuerpos , Presión Sanguínea/fisiología , Circulación Cerebrovascular/fisiología , Femenino , Homeostasis/fisiología , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Preeclampsia/fisiopatología , Embarazo , Ratas
18.
Neurotox Res ; 38(2): 344-358, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32506341

RESUMEN

Epidemiological studies indicate that long-term occupational exposure to aluminum (Al) causes neurotoxicity and cognitive impairment. While the molecular underpinnings associated with workers' cognitive impairment is unclear, one mechanism may involve Al-induced PI3K/Akt/mTOR activation and neuronal cell death, which impairs learning and memory in rats. Here, we sought to determine whether PI3K/Akt/mTOR is also associated with cognitive impairment in Al-exposed occupational workers. Cognitive function was screened by Mini-Mental State Examination (MMSE) and Clock-Drawing Test (CDT), and serum Al and PI3K/Akt/mTOR-associated gene expression was quantified. A negative correlation between serum Al and scores of MMSE and CDT was found, which might relate with downregulation of PI3K/Akt/mTOR. To determine the role of the PI3K/Akt/mTOR pathway cognitive function, we treated zebrafish with Al and observed a profound impairment in learning and memory. Increased brain Al levels was associated with decreased expression of PI3K/Akt/mTOR in Al-exposed zebrafish. Finally, rapamycin, an mTOR inhibitor, was added to isolate the role of mTOR specifically in the Al exposed zebrafish. The results suggested that Al induces learning and memory deficits by downregulating PI3K, Akt, and mTOR1 expression and inducing neuronal cell death like rapamycin group. This study indicates that aluminum exposure can cause cognitive impairment through PI3K/Akt/mTOR pathway, with mTOR activity being a critical player involved in this mechanism. Future studies are necessary to further characterize the role of PI3K/Akt/mTOR1 signaling in Al-induced neurocognitive decline among Al occupational workers. These findings draw attention to Al risk exposure among occupational workers and the need to implement novel safety and protective measures to mitigate neurocognitive health risks in the Al industrial workspace.


Asunto(s)
Aluminio/toxicidad , Disfunción Cognitiva/metabolismo , Memoria/efectos de los fármacos , Metalurgia , Exposición Profesional , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adulto , Animales , Muerte Celular , Disfunción Cognitiva/inducido químicamente , Femenino , Humanos , Aprendizaje/efectos de los fármacos , Masculino , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Neuronas/efectos de los fármacos , Pruebas Neuropsicológicas , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Pez Cebra
19.
Sci Rep ; 9(1): 10298, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311957

RESUMEN

Inner ear sensory afferent connections establish sensory maps between the inner ear hair cells and the vestibular and auditory nuclei to allow vestibular and sound information processing. While molecular guidance of sensory afferents to the periphery has been well studied, molecular guidance of central projections from the ear is only beginning to emerge. Disorganized central projections of spiral ganglion neurons in a Wnt/PCP pathway mutant, Prickle1, suggest the Wnt/PCP pathway plays a role in guiding cochlear afferents to the cochlear nuclei in the hindbrain, consistent with known expression of the Wnt receptor, Frizzled3 (Fzd3) in inner ear neurons. We therefore investigated the role of Wnt signaling in central pathfinding in Fzd3 mutant mice and Fzd3 morpholino treated frogs and found aberrant central projections of vestibular afferents in both cases. Ear transplantations from knockdown to control Xenopus showed that it is the Fzd3 expressed within the ear that mediates this guidance. Also, cochlear afferents of Fzd3 mutant mice lack the orderly topological organization observed in controls. Quantification of Fzd3 expression in spiral ganglion neurons show a gradient of expression with Fzd3 being higher in the apex than in the base. Together, these results suggest that a gradient of Fzd3 in inner ear afferents directs projections to the correct dorsoventral column within the hindbrain.


Asunto(s)
Oído Interno/metabolismo , Receptores Frizzled/genética , Rombencéfalo/metabolismo , Proteínas de Xenopus/genética , Animales , Receptores Frizzled/metabolismo , Técnicas de Silenciamiento del Gen , Ratones , Mutación , Ganglio Espiral de la Cóclea/metabolismo , Vía de Señalización Wnt , Proteínas de Xenopus/metabolismo , Xenopus laevis
20.
Front Cell Dev Biol ; 7: 59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069224

RESUMEN

Central nervous system neurons become postmitotic when radial glia cells divide to form neuroblasts. Neuroblasts may migrate away from the ventricle radially along glia fibers, in various directions or even across the midline. We present four cases of unusual migration that are variably connected to either pathology or formation of new populations of neurons with new connectivities. One of the best-known cases of radial migration involves granule cells that migrate from the external granule cell layer along radial Bergman glia fibers to become mature internal granule cells. In various medulloblastoma cases this migration does not occur and transforms the external granule cell layer into a rapidly growing tumor. Among the ocular motor neurons is one unique population that undergoes a contralateral migration and uniquely innervates the superior rectus and levator palpebrae muscles. In humans, a mutation of a single gene ubiquitously expressed in all cells, induces innervation defects only in this unique motor neuron population, leading to inability to elevate eyes or upper eyelids. One of the best-known cases for longitudinal migration is the facial branchial motor (FBM) neurons and the overlapping inner ear efferent population. We describe here molecular cues that are needed for the caudal migration of FBM to segregate these motor neurons from the differently migrating inner ear efferent population. Finally, we describe unusual migration of inner ear spiral ganglion neurons that result in aberrant connections with disruption of frequency presentation. Combined, these data identify unique migratory properties of various neuronal populations that allow them to adopt new connections but also sets them up for unique pathologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA