Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genomics ; 113(5): 3128-3140, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245829

RESUMEN

The ductus arteriosus (DA) connects the fetal pulmonary artery and aorta, diverting placentally oxygenated blood from the developing lungs to the systemic circulation. The DA constricts in response to increases in oxygen (O2) with the first breaths, resulting in functional DA closure, with anatomic closure occurring within the first days of life. Failure of DA closure results in persistent patent ductus arteriosus (PDA), a common complication of extreme preterm birth. The DA's response to O2, though modulated by the endothelium, is intrinsic to the DA smooth muscle cells (DASMC). DA constriction is mediated by mitochondrial-derived reactive oxygen species, which increase in proportion to arterial partial pressure of oxygen (PaO2). The resulting redox changes inhibit voltage-gated potassium channels (Kv) leading to cell depolarization, calcium influx and DASMC constriction. To date, there has not been an unbiased assessment of the human DA O2-sensors using transcriptomics, nor are there known molecular mechanisms which characterize DA closure. DASMCs were isolated from DAs obtained from 10 term infants at the time of congenital heart surgery. Cells were purified by flow cytometry, negatively sorting using CD90 and CD31 to eliminate fibroblasts or endothelial cells, respectively. The purity of the DASMC population was confirmed by positive staining for α-smooth muscle actin, smoothelin B and caldesmon. Cells were grown for 96 h in hypoxia (2.5% O2) or normoxia (19% O2) and confocal imaging with Cal-520 was used to determine oxygen responsiveness. An oxygen-induced increase in intracellular calcium of 18.1% ± 4.4% and SMC constriction (-27% ± 1.5% shortening) occurred in all cell lines within five minutes. RNA sequencing of the cells grown in hypoxia and normoxia revealed significant regulation of 1344 genes (corrected p < 0.05). We examined these genes using Gene Ontology (GO). This unbiased assessment of altered gene expression indicated significant enrichment of the following GOterms: mitochondria, cellular respiration and transcription. The top regulated biologic process was generation of precursor metabolites and energy. The top regulated cellular component was mitochondrial matrix. The top regulated molecular function was transcription coactivator activity. Multiple members of the NADH-ubiquinone oxidoreductase (NDUF) family are upregulated in human DASMC (hDASMC) following normoxia. Several of our differentially regulated transcripts are encoded by genes that have been associated with genetic syndromes that have an increased incidence of PDA (Crebb binding protein and Histone Acetyltransferase P300). This first examination of the effects of O2 on human DA transcriptomics supports a putative role for mitochondria as oxygen sensors.


Asunto(s)
Conducto Arterioso Permeable , Conducto Arterial , Nacimiento Prematuro , Conducto Arterial/metabolismo , Conducto Arterioso Permeable/etiología , Conducto Arterioso Permeable/metabolismo , Células Endoteliales/metabolismo , Humanos , Recién Nacido , Mitocondrias/genética , Miocitos del Músculo Liso/metabolismo , Oxígeno/metabolismo , Oxígeno/farmacología , Nacimiento Prematuro/metabolismo , Transcriptoma , Vasoconstricción/fisiología
2.
Circ Res ; 124(12): 1727-1746, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-30922174

RESUMEN

RATIONALE: Hypoxic pulmonary vasoconstriction (HPV) optimizes systemic oxygen delivery by matching ventilation to perfusion. HPV is intrinsic to pulmonary artery smooth muscle cells (PASMCs). Hypoxia dilates systemic arteries, including renal arteries. Hypoxia is sensed by changes in mitochondrial-derived reactive oxygen species, notably hydrogen peroxide (H2O2) ([H2O2]mito). Decreases in [H2O2]mito elevate pulmonary vascular tone by increasing intracellular calcium ([Ca2+]i) through reduction-oxidation regulation of ion channels. Although HPV is mimicked by the Complex I inhibitor, rotenone, the molecular identity of the O2 sensor is unknown. OBJECTIVE: To determine the role of Ndufs2 (NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 2), Complex I's rotenone binding site, in pulmonary vascular oxygen-sensing. METHODS AND RESULTS: Mitochondria-conditioned media from pulmonary and renal mitochondria isolated from normoxic and chronically hypoxic rats were infused into an isolated lung bioassay. Mitochondria-conditioned media from normoxic lungs contained more H2O2 than mitochondria-conditioned media from chronic hypoxic lungs or kidneys and uniquely attenuated HPV via a catalase-dependent mechanism. In PASMC, acute hypoxia decreased H2O2 within 112±7 seconds, followed, within 205±34 seconds, by increased intracellular calcium concentration, [Ca2+]i. Hypoxia had no effects on [Ca2+]i in renal artery SMC. Hypoxia decreases both cytosolic and mitochondrial H2O2 in PASMC while increasing cytosolic H2O2 in renal artery SMC. Ndufs2 expression was greater in PASMC versus renal artery SMC. Lung Ndufs2 cysteine residues became reduced during acute hypoxia and both hypoxia and reducing agents caused functional inhibition of Complex I. In PASMC, siNdufs2 (cells/tissue treated with Ndufs2 siRNA) decreased normoxic H2O2, prevented hypoxic increases in [Ca2+]i, and mimicked aspects of chronic hypoxia, including decreasing Complex I activity, elevating the nicotinamide adenine dinucleotide (NADH/NAD+) ratio and decreasing expression of the O2-sensitive ion channel, Kv1.5. Knocking down another Fe-S center within Complex I (Ndufs1, NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 1) or other mitochondrial subunits proposed as putative oxygen sensors (Complex III's Rieske Fe-S center and COX4i2 [cytochrome c oxidase subunit 4 isoform 2] in Complex IV) had no effect on hypoxic increases in [Ca2+]i. In vivo, siNdufs2 significantly decreased hypoxia- and rotenone-induced constriction while enhancing phenylephrine-induced constriction. CONCLUSIONS: Ndufs2 is essential for oxygen-sensing and HPV.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Hipoxia/metabolismo , NADH Deshidrogenasa/metabolismo , Oxígeno/metabolismo , Resistencia Vascular/fisiología , Vasoconstricción/fisiología , Animales , Células Cultivadas , Hipoxia/patología , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Técnicas de Cultivo de Órganos , Oxígeno/análisis , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley
3.
Arterioscler Thromb Vasc Biol ; 40(11): 2605-2618, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32998516

RESUMEN

OBJECTIVE: Pulmonary arterial hypertension is a disease of proliferative vascular occlusion that is strongly linked to mutations in BMPR2-the gene encoding the BMPR-II (BMP [bone morphogenetic protein] type II receptor). The endothelial-selective BMPR-II ligand, BMP9, reverses disease in animal models of pulmonary arterial hypertension and suppresses the proliferation of healthy endothelial cells. However, the impact of BMPR2 loss on the antiproliferative actions of BMP9 has yet to be assessed. Approach and Results: BMP9 suppressed proliferation in blood outgrowth endothelial cells from healthy control subjects but increased proliferation in blood outgrowth endothelial cells from pulmonary arterial hypertension patients with BMPR2 mutations. This shift from growth suppression to enhanced proliferation was recapitulated in control human pulmonary artery endothelial cells following siRNA-mediated BMPR2 silencing, as well as in mouse pulmonary endothelial cells isolated from endothelial-conditional Bmpr2 knockout mice (Bmpr2EC-/-). BMP9-induced proliferation was not attributable to altered metabolic activity or elevated TGFß (transforming growth factor beta) signaling but was linked to the prolonged induction of the canonical BMP target ID1 in the context of BMPR2 loss. In vivo, daily BMP9 administration to neonatal mice impaired both retinal and lung vascular patterning in control mice (Bmpr2EC+/+) but had no measurable effect on mice bearing a heterozygous endothelial Bmpr2 deletion (Bmpr2EC+/-) and caused excessive angiogenesis in both vascular beds for Bmpr2EC-/- mice. CONCLUSIONS: BMPR2 loss reverses the endothelial response to BMP9, causing enhanced proliferation. This finding has potential implications for the proposed translation of BMP9 as a treatment for pulmonary arterial hypertension and suggests the need for focused patient selection in clinical trials.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/deficiencia , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Factor 2 de Diferenciación de Crecimiento/farmacología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Adulto , Anciano , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Estudios de Casos y Controles , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Factor 2 de Diferenciación de Crecimiento/toxicidad , Humanos , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Transducción de Señal , Adulto Joven
4.
Circulation ; 138(3): 287-304, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29431643

RESUMEN

BACKGROUND: Mitotic fission is increased in pulmonary arterial hypertension (PAH), a hyperproliferative, apoptosis-resistant disease. The fission mediator dynamin-related protein 1 (Drp1) must complex with adaptor proteins to cause fission. Drp1-induced fission has been therapeutically targeted in experimental PAH. Here, we examine the role of 2 recently discovered, poorly understood Drp1 adapter proteins, mitochondrial dynamics protein of 49 and 51 kDa (MiD49 and MiD51), in normal vascular cells and explore their dysregulation in PAH. METHODS: Immunoblots of pulmonary artery smooth muscle cells (control, n=6; PAH, n=8) and immunohistochemistry of lung sections (control, n=6; PAH, n=6) were used to assess the expression of MiD49 and MiD51. The effects of manipulating MiDs on cell proliferation, cell cycle, and apoptosis were assessed in human and rodent PAH pulmonary artery smooth muscle cells with flow cytometry. Mitochondrial fission was studied by confocal imaging. A microRNA (miR) involved in the regulation of MiD expression was identified using microarray techniques and in silico analyses. The expression of circulatory miR was assessed with quantitative reverse transcription-polymerase chain reaction in healthy volunteers (HVs) versus patients with PAH from Sheffield, UK (plasma: HV, n=29, PAH, n=27; whole blood: HV, n=11, PAH, n=14) and then confirmed in a cohort from Beijing, China (plasma: HV, n=19, PAH, n=36; whole blood: HV, n=20, PAH, n=39). This work was replicated in monocrotaline and Sugen 5416-hypoxia, preclinical PAH models. Small interfering RNAs targeting MiDs or an miR mimic were nebulized to rats with monocrotaline-induced PAH (n=4-10). RESULTS: MiD expression is increased in PAH pulmonary artery smooth muscle cells, which accelerates Drp1-mediated mitotic fission, increases cell proliferation, and decreases apoptosis. Silencing MiDs (but not other Drp1 binding partners, fission 1 or mitochondrial fission factor) promotes mitochondrial fusion and causes G1-phase cell cycle arrest through extracellular signal-regulated kinases 1/2- and cyclin-dependent kinase 4-dependent mechanisms. Augmenting MiDs in normal cells causes fission and recapitulates the PAH phenotype. MiD upregulation results from decreased miR-34a-3p expression. Circulatory miR-34a-3p expression is decreased in both patients with PAH and preclinical models of PAH. Silencing MiDs or augmenting miR-34a-3p regresses experimental PAH. CONCLUSIONS: In health, MiDs regulate Drp1-mediated fission, whereas in disease, epigenetic upregulation of MiDs increases mitotic fission, which drives pathological proliferation and apoptosis resistance. The miR-34a-3p-MiD pathway offers new therapeutic targets for PAH.


Asunto(s)
GTP Fosfohidrolasas/genética , Hipertensión Pulmonar/genética , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Miocitos del Músculo Liso/fisiología , Factores de Elongación de Péptidos/genética , Arteria Pulmonar/patología , Telangiectasia/congénito , Animales , Apoptosis , Proliferación Celular , Modelos Animales de Enfermedad , Dinaminas , Epigénesis Genética , Humanos , MicroARNs/genética , Dinámicas Mitocondriales , Unión Proteica , Hipertensión Arterial Pulmonar , ARN Interferente Pequeño/genética , Ratas , Telangiectasia/genética
5.
Am J Respir Crit Care Med ; 195(4): 515-529, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27648837

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy characterized by excessive pulmonary artery smooth muscle cell (PASMC) proliferation, migration, and apoptosis resistance. This cancer-like phenotype is promoted by increased cytosolic calcium ([Ca2+]cyto), aerobic glycolysis, and mitochondrial fission. OBJECTIVES: To determine how changes in mitochondrial calcium uniporter (MCU) complex (MCUC) function influence mitochondrial dynamics and contribute to PAH's cancer-like phenotype. METHODS: PASMCs were isolated from patients with PAH and healthy control subjects and assessed for expression of MCUC subunits. Manipulation of the pore-forming subunit, MCU, in PASMCs was achieved through small interfering RNA knockdown or MCU plasmid-mediated up-regulation, as well as through modulation of the upstream microRNAs (miRs) miR-138 and miR-25. In vivo, nebulized anti-miRs were administered to rats with monocrotaline-induced PAH. MEASUREMENTS AND MAIN RESULTS: Impaired MCUC function, resulting from down-regulation of MCU and up-regulation of an inhibitory subunit, mitochondrial calcium uptake protein 1, is central to PAH's pathogenesis. MCUC dysfunction decreases intramitochondrial calcium ([Ca2+]mito), inhibiting pyruvate dehydrogenase activity and glucose oxidation, while increasing [Ca2+]cyto, promoting proliferation, migration, and fission. In PAH PASMCs, increasing MCU decreases cell migration, proliferation, and apoptosis resistance by lowering [Ca2+]cyto, raising [Ca2+]mito, and inhibiting fission. In normal PASMCs, MCUC inhibition recapitulates the PAH phenotype. In PAH, elevated miRs (notably miR-138) down-regulate MCU directly and also by decreasing MCU's transcriptional regulator cAMP response element-binding protein 1. Nebulized anti-miRs against miR-25 and miR-138 restore MCU expression, reduce cell proliferation, and regress established PAH in the monocrotaline model. CONCLUSIONS: These results highlight miR-mediated MCUC dysfunction as a unifying mechanism in PAH that can be therapeutically targeted.


Asunto(s)
Canales de Calcio/genética , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/genética , Terapia Genética/métodos , Hipertensión Pulmonar/genética , MicroARNs/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Músculo Liso Vascular/patología , Arteria Pulmonar/patología , Animales , Apoptosis/genética , Calcio/metabolismo , Canales de Calcio/metabolismo , Estudios de Casos y Controles , Técnicas de Cultivo de Célula/métodos , Proliferación Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citosol/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Glucólisis , Humanos , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/terapia , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Fenotipo , Arteria Pulmonar/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Ratas , Regulación hacia Arriba/genética
6.
Int J Mol Sci ; 19(9)2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30213070

RESUMEN

Right ventricular failure (RVF) remains the leading cause of death in pulmonary arterial hypertension (PAH). We investigated the transcriptomic signature of RVF in hemodynamically well-phenotyped monocrotaline (MCT)-treated, male, Sprague-Dawley rats with severe PAH and decompensated RVF (increased right ventricular (RV) end diastolic volume (EDV), decreased cardiac output (CO), tricuspid annular plane systolic excursion (TAPSE) and ventricular-arterial decoupling). RNA sequencing revealed 2547 differentially regulated transcripts in MCT-RVF RVs. Multiple enriched gene ontology (GO) terms converged on mitochondria/metabolism, fibrosis, inflammation, and angiogenesis. The mitochondrial transcriptomic pathway is the most affected in RVF, with 413 dysregulated genes. Downregulated genes included TFAM (-0.45-fold), suggesting impaired mitochondrial biogenesis, CYP2E1 (-3.8-fold), a monooxygenase which when downregulated increases oxidative stress, dehydrogenase/reductase 7C (DHRS7C) (-2.8-fold), consistent with excessive autonomic activation, and polypeptide N-acetyl-galactose-aminyl-transferase 13 (GALNT13), a known pulmonary hypertension (PH) biomarker (-2.7-fold). The most up-regulated gene encodes Periostin (POSTN; 4.5-fold), a matricellular protein relevant to fibrosis. Other dysregulated genes relevant to fibrosis include latent-transforming growth factor beta-binding protein 2 (LTBP2), thrombospondin4 (THBS4). We also identified one dysregulated gene relevant to all disordered transcriptomic pathways, ANNEXIN A1. This anti-inflammatory, phospholipid-binding mediator, is a putative target for therapy in RVF-PAH. Comparison of expression profiles in the MCT-RV with published microarray data from the RV of pulmonary artery-banded mice and humans with bone morphogenetic protein receptor type 2 (BMPR2)-mutations PAH reveals substantial conservation of gene dysregulation, which may facilitate clinical translation of preclinical therapeutic and biomarkers studies. Transcriptomics reveals the molecular fingerprint of RVF to be heavily characterized by mitochondrial dysfunction, fibrosis and inflammation.


Asunto(s)
Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Transcriptoma/genética , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/fisiopatología , Animales , Anexina A1/genética , Anexina A1/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteínas de Unión a TGF-beta Latente/genética , Proteínas de Unión a TGF-beta Latente/metabolismo , Masculino , Ratones , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Arteria Pulmonar/patología , Ratas , Ratas Sprague-Dawley , Trombospondinas/genética , Trombospondinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Pflugers Arch ; 468(1): 43-58, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26395471

RESUMEN

The mammalian homeostatic oxygen sensing system (HOSS) initiates changes in vascular tone, respiration, and neurosecretion that optimize oxygen uptake and tissue oxygen delivery within seconds of detecting altered environmental or arterial PO2. The HOSS includes carotid body type 1 cells, adrenomedullary cells, neuroepithelial bodies, and smooth muscle cells (SMCs) in pulmonary arteries (PAs), ductus arteriosus (DA), and fetoplacental arteries. Hypoxic pulmonary vasoconstriction (HPV) optimizes ventilation-perfusion matching. In utero, HPV diverts placentally oxygenated blood from the non-ventilated lung through the DA. At birth, increased alveolar and arterial oxygen tension dilates the pulmonary vasculature and constricts the DA, respectively, thereby transitioning the newborn to an air-breathing organism. Though modulated by endothelial-derived relaxing and constricting factors, O2 sensing is intrinsic to PASMCs and DASMCs. Within the SMC's dynamic mitochondrial network, changes in PO2 alter the reduction-oxidation state of redox couples (NAD(+)/NADH, NADP(+)/NADPH) and the production of reactive oxygen species, ROS (e.g., H2O2), by complexes I and III of the electron transport chain (ETC). ROS and redox couples regulate ion channels, transporters, and enzymes, changing intracellular calcium [Ca(2+)]i and calcium sensitivity and eliciting homeostatic responses to hypoxia. In PASMCs, hypoxia inhibits ROS production and reduces redox couples, thereby inhibiting O2-sensitive voltage-gated potassium (Kv) channels, depolarizing the plasma membrane, activating voltage-gated calcium channels (CaL), increasing [Ca(2+)]i, and causing vasoconstriction. In DASMCs, elevated PO2 causes mitochondrial fission, increasing ETC complex I activity and ROS production. The DASMC's downstream response to elevated PO2 (Kv channel inhibition, CaL activation, increased [Ca(2+)]i, and rho kinase activation) is similar to the PASMC's hypoxic response. Impaired O2 sensing contributes to human diseases, including pulmonary arterial hypertension and patent DA.


Asunto(s)
Conducto Arterial/metabolismo , Pulmón/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Canales de Calcio/metabolismo , Humanos , Pulmón/irrigación sanguínea , Oxígeno/sangre , Canales de Potasio/metabolismo
9.
Biochem J ; 455(2): 157-67, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23924350

RESUMEN

Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.


Asunto(s)
Volumen Cardíaco/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Animales , Daño del ADN , ADN Mitocondrial/metabolismo , Metabolismo Energético , Predisposición Genética a la Enfermedad , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo
10.
J Clin Invest ; 134(11)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573824

RESUMEN

Individuals with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of aging related health conditions and all-cause mortality, but whether CHIP affects risk of infection is much less clear. Using UK Biobank data, we revealed a positive association between CHIP and incident pneumonia in 438,421 individuals. We show that inflammation enhanced pneumonia risk, as CHIP carriers with a hypomorphic IL6 receptor polymorphism were protected. To better characterize the pathways of susceptibility, we challenged hematopoietic Tet Methylcytosine Dioxygenase 2-knockout (Tet2-/-) and floxed control mice (Tet2fl/fl) with Streptococcus pneumoniae. As with human CHIP carriers, Tet2-/- mice had hematopoietic abnormalities resulting in the expansion of inflammatory monocytes and neutrophils in peripheral blood. Yet, these cells were insufficient in defending against S. pneumoniae and resulted in increased pathology, impaired bacterial clearance, and higher mortality in Tet2-/- mice. We delineated the transcriptional landscape of Tet2-/- neutrophils and found that, while inflammation-related pathways were upregulated in Tet2-/- neutrophils, migration and motility pathways were compromised. Using live-imaging techniques, we demonstrated impairments in motility, pathogen uptake, and neutrophil extracellular trap (NET) formation by Tet2-/- neutrophils. Collectively, we show that CHIP is a risk factor for bacterial pneumonia related to innate immune impairments.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Inmunidad Innata , Neutrófilos , Streptococcus pneumoniae , Animales , Femenino , Humanos , Masculino , Ratones , Dioxigenasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Ratones Noqueados , Neutrófilos/inmunología , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/patología , Neumonía Bacteriana/genética , Neumonía Bacteriana/microbiología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Streptococcus pneumoniae/inmunología
11.
Life Sci ; 333: 122137, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37788764

RESUMEN

Circulating metabolites are indicators of systemic metabolic dysfunction and can be detected through contemporary techniques in metabolomics. These metabolites are involved in numerous mitochondrial metabolic processes including glycolysis, fatty acid ß-oxidation, and amino acid catabolism, and changes in the abundance of these metabolites is implicated in the pathogenesis of cardiometabolic diseases (CMDs). Epigenetic regulation and direct metabolite-protein interactions modulate metabolism, both within cells and in the circulation. Dysfunction of multiple mitochondrial components stemming from mitochondrial DNA mutations are implicated in disease pathogenesis. This review will summarize the current state of knowledge regarding: i) the interactions between metabolites found within the mitochondrial environment during CMDs, ii) various metabolites' effects on cellular and systemic function, iii) how harnessing the power of metabolomic analyses represents the next frontier of precision medicine, and iv) how these concepts integrate to expand the clinical potential for translational cardiometabolic medicine.


Asunto(s)
Enfermedades Cardiovasculares , Epigénesis Genética , Humanos , Metabolómica/métodos , Metaboloma , Mitocondrias/metabolismo , Enfermedades Cardiovasculares/metabolismo
12.
Trends Endocrinol Metab ; 34(9): 554-570, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37414716

RESUMEN

Mitochondria operate as hubs of cellular metabolism that execute important regulatory functions. Damaged/dysfunctional mitochondria are recognized as major pathogenic contributors to many common human diseases. Assessment of mitochondrial function relies upon invasive tissue biopsies; peripheral blood cells, specifically platelets, have emerged as an ideal candidate for mitochondrial function assessment. Accessibility and documented pathology-related dysfunction have prompted investigation into the role of platelets in disease, the contribution of platelet mitochondria to pathophysiology, and the capacity of platelets to reflect systemic mitochondrial health. Platelet mitochondrial bioenergetics are being investigated in neurodegenerative and cardiopulmonary diseases, infection, diabetes, and other (patho)physiological states such as aging and pregnancy. Early findings support the use of platelets as a biomarker for mitochondrial functional health.


Asunto(s)
Metabolismo Energético , Mitocondrias , Humanos , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Plaquetas/metabolismo , Biomarcadores , Biopsia Líquida
13.
Endocrinol Diabetes Metab ; 6(1): e385, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36300606

RESUMEN

INTRODUCTION: Medium-Chain Acyl-CoA Dehydrogenase Deficiency (MCADD) is the most common inherited metabolic disorder of ß-oxidation. Patients with MCADD present with hypoketotic hypoglycemia, which may quickly progress to lethargy, coma, and death. Prognosis for MCADD patients is highly promising once a diagnosis has been established, though management strategies may vary depending on the severity of illness and the presence of comorbidities. METHODS AND RESULTS: Given the rapid developments in the world of gene therapy and implementation of newborn screening for inherited metabolic disorders, the provision of concise and contemporary knowledge of MCADD is essential for clinicians to effectively manage patients. Thus, this review aims to consolidate current information for physicians on the pathogenesis, diagnostic tools, and treatment options for MCADD patients. CONCLUSION: MCADD is a commonly inherited metabolic disease with serious implications for health outcomes, particularly in children, that may be successfully managed with proper intervention.


Asunto(s)
Hipoglucemia , Errores Innatos del Metabolismo Lipídico , Recién Nacido , Niño , Humanos , Acil-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/terapia , Errores Innatos del Metabolismo Lipídico/complicaciones , Tamizaje Neonatal/efectos adversos , Hipoglucemia/diagnóstico , Hipoglucemia/etiología , Hipoglucemia/terapia
14.
J Am Heart Assoc ; 12(13): e029131, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37345832

RESUMEN

Background As partial pressure of oxygen (pO2) rises with the first breath, the ductus arteriosus (DA) constricts, diverting blood flow to the pulmonary circulation. The DA's O2 sensor resides within smooth muscle cells. The DA smooth muscle cells' mitochondrial electron transport chain (ETC) produces reactive oxygen species (ROS) in proportion to oxygen tension, causing vasoconstriction by regulating redox-sensitive ion channels and enzymes. To identify which ETC complex contributes most to DA O2 sensing and determine whether ROS mediate O2 sensing independent of metabolism, we used electron leak suppressors, S1QEL (suppressor of site IQ electron leak) and S3QEL (suppressor of site IIIQo electron leak), which decrease ROS production by inhibiting electron leak from quinone sites IQ and IIIQo, respectively. Methods and Results The effects of S1QEL, S3QEL, and ETC inhibitors (rotenone and antimycin A) on DA tone, mitochondrial metabolism, O2-induced changes in intracellular calcium, and ROS were studied in rabbit DA rings, and human and rabbit DA smooth muscle cells. S1QEL's effects on DA patency were assessed in rabbit kits, using micro computed tomography. In DA rings, S1QEL, but not S3QEL, reversed O2-induced constriction (P=0.0034) without reducing phenylephrine-induced constriction. S1QEL did not inhibit mitochondrial metabolism or ETC-I activity. In human DA smooth muscle cells, S1QEL and rotenone inhibited O2-induced increases in intracellular calcium (P=0.02 and 0.001, respectively), a surrogate for DA constriction. S1QEL inhibited O2-induced ROS generation (P=0.02). In vivo, S1QEL prevented O2-induced DA closure (P<0.0001). Conclusions S1QEL, but not S3QEL, inhibited O2-induced rises in ROS and DA constriction ex vivo and in vivo. DA O2 sensing relies on pO2-dependent changes in electron leak at site IQ in ETC-I, independent of metabolism. S1QEL offers a therapeutic means to maintain DA patency.


Asunto(s)
Conducto Arterial , Animales , Humanos , Conejos , Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Transporte de Electrón , Calcio/metabolismo , Electrones , Rotenona/metabolismo , Rotenona/farmacología , Microtomografía por Rayos X
15.
Data Brief ; 40: 107736, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35005134

RESUMEN

The Ductus Arteriosus (DA) is a fetal vessel that connects the aorta to the pulmonary artery ensuring that placental oxygenated blood is diverted from the lungs to the systemic circulation. Following exposure to oxygen (O2), in the first few days of life, the DA responds with a functional closure that is followed by anatomical closure. Here, we study human DA smooth muscle cells (DASMC) taken from 10 term infants during congenital heart surgery. Purification of these cells using flow cytometry ensured a pure population of DASMCs, which we confirmed as responsive to O2. An oxygen-induced increase in intracellular calcium of 18.1%±4.4% and SMC constriction (-27%±1.5% shortening) occurred in all cell lines within five minutes. These cells were maintained in either hypoxia (2.5% O2), mimicking in utero conditions or in normoxia (19% O2) mimicking neonate conditions. We then used 3' RNAsequencing to identify the transcriptome of DASMCs in each condition [1]. In this paper, we present the full differentially regulated gene list from this experiment.

16.
Redox Biol ; 49: 102225, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34959099

RESUMEN

BACKGROUND: Neutrophils play a role in innate immunity and are critical for clearance of Staphylococcus aureus. Current understanding of neutrophil bactericidal effects is that NADPH oxidase produces reactive oxygen species (ROS), mediating bacterial killing. Neutrophils also contain numerous mitochondria; since these organelles lack oxidative metabolism, their function is unclear. We hypothesize that mitochondria in human neutrophils contribute to the bactericidal capacity of S. aureus. METHODS: and Findings: Using human neutrophils isolated from healthy volunteers (n = 13; 7 females, 6 males), we show that mitochondria are critical in the immune response to S. aureus. Using live-cell and fixed confocal, and transmission electron microscopy, we show mitochondrial tagging of bacteria prior to ingestion and surrounding of phagocytosed bacteria immediately upon engulfment. Further, we demonstrate that mitochondria are ejected from intact neutrophils and engage bacteria during vital NETosis. Inhibition of the mitochondrial electron transport chain at Complex III, but not Complex I, attenuates S. aureus killing by 50 ± 7%, comparable to the NADPH oxidase inhibitor apocynin. Similarly, mitochondrial ROS scavenging using MitoTEMPO attenuates bacterial killing 112 ± 60% versus vehicle control. Antimycin A treatment also reduces mitochondrial ROS production by 50 ± 12% and NETosis by 53 ± 5%. CONCLUSIONS: We identify a previously unrecognized role for mitochondria in human neutrophils in the killing of S. aureus. Inhibition of electron transport chain Complex III significantly impairs antimicrobial activity. This is the first demonstration that vital NETosis, an early event in the antimicrobial response, occurring within 5 min of bacterial exposure, depends on the function of mitochondrial Complex III. Mitochondria join NADPH oxidase as bactericidal ROS generators that mediate the bactericidal activities of human neutrophils.


Asunto(s)
Neutrófilos , Staphylococcus aureus , Femenino , Humanos , Masculino , Mitocondrias/metabolismo , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/metabolismo
17.
Redox Biol ; 58: 102508, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334378

RESUMEN

RATIONALE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 pneumonia. We hypothesize that SARS-CoV-2 causes alveolar injury and hypoxemia by damaging mitochondria in airway epithelial cells (AEC) and pulmonary artery smooth muscle cells (PASMC), triggering apoptosis and bioenergetic impairment, and impairing hypoxic pulmonary vasoconstriction (HPV), respectively. OBJECTIVES: We examined the effects of: A) human betacoronaviruses, SARS-CoV-2 and HCoV-OC43, and individual SARS-CoV-2 proteins on apoptosis, mitochondrial fission, and bioenergetics in AEC; and B) SARS-CoV-2 proteins and mouse hepatitis virus (MHV-1) infection on HPV. METHODS: We used transcriptomic data to identify temporal changes in mitochondrial-relevant gene ontology (GO) pathways post-SARS-CoV-2 infection. We also transduced AECs with SARS-CoV-2 proteins (M, Nsp7 or Nsp9) and determined effects on mitochondrial permeability transition pore (mPTP) activity, relative membrane potential, apoptosis, mitochondrial fission, and oxygen consumption rates (OCR). In human PASMC, we assessed the effects of SARS-CoV-2 proteins on hypoxic increases in cytosolic calcium, an HPV proxy. In MHV-1 pneumonia, we assessed HPV via cardiac catheterization and apoptosis using the TUNEL assay. RESULTS: SARS-CoV-2 regulated mitochondrial apoptosis, mitochondrial membrane permeabilization and electron transport chain (ETC) GO pathways within 2 hours of infection. SARS-CoV-2 downregulated ETC Complex I and ATP synthase genes, and upregulated apoptosis-inducing genes. SARS-CoV-2 and HCoV-OC43 upregulated and activated dynamin-related protein 1 (Drp1) and increased mitochondrial fission. SARS-CoV-2 and transduced SARS-CoV-2 proteins increased apoptosis inducing factor (AIF) expression and activated caspase 7, resulting in apoptosis. Coronaviruses also reduced OCR, decreased ETC Complex I activity and lowered ATP levels in AEC. M protein transduction also increased mPTP opening. In human PASMC, M and Nsp9 proteins inhibited HPV. In MHV-1 pneumonia, infected AEC displayed apoptosis and HPV was suppressed. BAY K8644, a calcium channel agonist, increased HPV and improved SpO2. CONCLUSIONS: Coronaviruses, including SARS-CoV-2, cause AEC apoptosis, mitochondrial fission, and bioenergetic impairment. SARS-CoV-2 also suppresses HPV by targeting mitochondria. This mitochondriopathy is replicated by transduction with SARS-CoV-2 proteins, indicating a mechanistic role for viral-host mitochondrial protein interactions. Mitochondriopathy is a conserved feature of coronaviral pneumonia that may exacerbate hypoxemia and constitutes a therapeutic target.


Asunto(s)
COVID-19 , Infecciones por Papillomavirus , Animales , Ratones , Humanos , SARS-CoV-2 , Hipoxia/complicaciones , Poro de Transición de la Permeabilidad Mitocondrial , Adenosina Trifosfato
18.
Lab Invest ; 91(8): 1122-35, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21647091

RESUMEN

While there is general agreement that cardiovascular disease (CVD) development is influenced by a combination of genetic, environmental, and behavioral contributors, the actual mechanistic basis of how these factors initiate or promote CVD development in some individuals while others with identical risk profiles do not, is not clearly understood. This review considers the potential role for mitochondrial genetics and function in determining CVD susceptibility from the standpoint that the original features that molded cellular function were based upon mitochondrial-nuclear relationships established millions of years ago and were likely refined during prehistoric environmental selection events that today, are largely absent. Consequently, contemporary risk factors that influence our susceptibility to a variety of age-related diseases, including CVD were probably not part of the dynamics that defined the processes of mitochondrial-nuclear interaction, and thus, cell function. In this regard, the selective conditions that contributed to cellular functionality and evolution should be given more consideration when interpreting and designing experimental data and strategies. Finally, future studies that probe beyond epidemiologic associations are required. These studies will serve as the initial steps for addressing the provocative concept that contemporary human disease susceptibility is the result of selection events for mitochondrial function that increased chances for prehistoric human survival and reproductive success.


Asunto(s)
Enfermedades Cardiovasculares/etiología , ADN Mitocondrial/genética , Mitocondrias/fisiología , Evolución Biológica , Dieta/efectos adversos , Susceptibilidad a Enfermedades , Humanos , Oxidación-Reducción , Selección Genética
19.
Redox Biol ; 47: 102164, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34656823

RESUMEN

Iron-sulfur (Fe-S) clusters are essential cofactors most commonly known for their role mediating electron transfer within the mitochondrial respiratory chain. The Fe-S cluster pathways that function within the respiratory complexes are highly conserved between bacteria and the mitochondria of eukaryotic cells. Within the electron transport chain, Fe-S clusters play a critical role in transporting electrons through Complexes I, II and III to cytochrome c, before subsequent transfer to molecular oxygen. Fe-S clusters are also among the binding sites of classical mitochondrial inhibitors, such as rotenone, and play an important role in the production of mitochondrial reactive oxygen species (ROS). Mitochondrial Fe-S clusters also play a critical role in the pathogenesis of disease. High levels of ROS produced at these sites can cause cell injury or death, however, when produced at low levels can serve as signaling molecules. For example, Ndufs2, a Complex I subunit containing an Fe-S center, N2, has recently been identified as a redox-sensitive oxygen sensor, mediating homeostatic oxygen-sensing in the pulmonary vasculature and carotid body. Fe-S clusters are emerging as transcriptionally-regulated mediators in disease and play a crucial role in normal physiology, offering potential new therapeutic targets for diseases including malaria, diabetes, and cancer.


Asunto(s)
Proteínas Hierro-Azufre , Hierro , Biología , Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Mitocondrias/metabolismo , Azufre/metabolismo
20.
Free Radic Biol Med ; 170: 150-178, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33450375

RESUMEN

The homeostatic oxygen sensing system (HOSS) optimizes systemic oxygen delivery. Specialized tissues utilize a conserved mitochondrial sensor, often involving NDUFS2 in complex I of the mitochondrial electron transport chain, as a site of pO2-responsive production of reactive oxygen species (ROS). These ROS are converted to a diffusible signaling molecule, hydrogen peroxide (H2O2), by superoxide dismutase (SOD2). H2O2 exits the mitochondria and regulates ion channels and enzymes, altering plasma membrane potential, intracellular Ca2+ and Ca2+-sensitization and controlling acute, adaptive, responses to hypoxia that involve changes in ventilation, vascular tone and neurotransmitter release. Subversion of this O2-sensing pathway creates a pseudohypoxic state that promotes disease progression in pulmonary arterial hypertension (PAH) and cancer. Pseudohypoxia is a state in which biochemical changes, normally associated with hypoxia, occur despite normal pO2. Epigenetic silencing of SOD2 by DNA methylation alters H2O2 production, activating hypoxia-inducible factor 1α, thereby disrupting mitochondrial metabolism and dynamics, accelerating cell proliferation and inhibiting apoptosis. Other epigenetic mechanisms, including dysregulation of microRNAs (miR), increase pyruvate dehydrogenase kinase and pyruvate kinase muscle isoform 2 expression in both diseases, favoring uncoupled aerobic glycolysis. This Warburg metabolic shift also accelerates cell proliferation and impairs apoptosis. Disordered mitochondrial dynamics, usually increased mitotic fission and impaired fusion, promotes disease progression in PAH and cancer. Epigenetic upregulation of dynamin-related protein 1 (Drp1) and its binding partners, MiD49 and MiD51, contributes to the pathogenesis of PAH and cancer. Finally, dysregulation of intramitochondrial Ca2+, resulting from impaired mitochondrial calcium uniporter complex (MCUC) function, links abnormal mitochondrial metabolism and dynamics. MiR-mediated decreases in MCUC function reduce intramitochondrial Ca2+, promoting Warburg metabolism, whilst increasing cytosolic Ca2+, promoting fission. Epigenetically disordered mitochondrial O2-sensing, metabolism, dynamics, and Ca2+ homeostasis offer new therapeutic targets for PAH and cancer. Promoting glucose oxidation, restoring the fission/fusion balance, and restoring mitochondrial calcium regulation are promising experimental therapeutic strategies.


Asunto(s)
Hipertensión Pulmonar , Neoplasias , Biología , Humanos , Peróxido de Hidrógeno , Hipertensión Pulmonar/genética , Neoplasias/genética , Neoplasias/terapia , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA