Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 62(11): 1716-1724, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37198000

RESUMEN

Saccharomyces cerevisiae IA3 is a 68 amino acid peptide inhibitor of yeast proteinase A (YPRA) characterized as a random coil when in solution, folding into an N-terminal amphipathic alpha helix for residues 2-32 when bound to YPRA, with residues 33-68 unresolved in the crystal complex. Circular dichroism (CD) spectroscopy results show that amino acid substitutions that remove hydrogen-bonding interactions observed within the hydrophilic face of the N-terminal domain (NTD) of IA3-YPRA crystal complex reduce the 2,2,2-trifluoroethanol (TFE)-induced helical transition in solution. Although nearly all substitutions decreased TFE-induced helicity compared to wild-type (WT), each construct did retain helical character in the presence of 30% (v/v) TFE and retained disorder in the absence of TFE. The NTDs of 8 different Saccharomyces species have nearly identical amino acid sequences, indicating that the NTD of IA3 may be highly evolved to adopt a helical fold when bound to YPRA and in the presence of TFE but remain unstructured in solution. Only one natural amino acid substitution explored within the solvent-exposed face of the NTD of IA3 induced TFE-helicity greater than the WT sequence. However, chemical modification of a cysteine by a nitroxide spin label that contains an acetamide side chain did enhance TFE-induced helicity. This finding suggests that non-natural amino acids that can increase hydrogen bonding or alter hydration through side-chain interactions may be important to consider when rationally designing intrinsically disordered proteins (IDPs) with varied biotechnological applications.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Solventes , Proteínas Intrínsecamente Desordenadas/genética , Estructura Secundaria de Proteína , Enlace de Hidrógeno , Secuencia de Aminoácidos , Saccharomyces cerevisiae , Dicroismo Circular , Trifluoroetanol/farmacología , Pliegue de Proteína
2.
Nat Chem Biol ; 12(10): 860-6, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27547920

RESUMEN

Oxidation of methionine disrupts the structure and function of a range of proteins, but little is understood about the chemistry that underlies these perturbations. Using quantum mechanical calculations, we found that oxidation increased the strength of the methionine-aromatic interaction motif, a driving force for protein folding and protein-protein interaction, by 0.5-1.4 kcal/mol. We found that non-hydrogen-bonded interactions between dimethyl sulfoxide (a methionine analog) and aromatic groups were enriched in both the Protein Data Bank and Cambridge Structural Database. Thermal denaturation and NMR spectroscopy experiments on model peptides demonstrated that oxidation of methionine stabilized the interaction by 0.5-0.6 kcal/mol. We confirmed the biological relevance of these findings through a combination of cell biology, electron paramagnetic resonance spectroscopy and molecular dynamics simulations on (i) calmodulin structure and dynamics, and (ii) lymphotoxin-α binding toTNFR1. Thus, the methionine-aromatic motif was a determinant of protein structural and functional sensitivity to oxidative stress.


Asunto(s)
Hidrocarburos Aromáticos/química , Metionina/química , Hidrocarburos Aromáticos/metabolismo , Metionina/metabolismo , Modelos Moleculares , Oxidación-Reducción , Teoría Cuántica
3.
J Phys Chem B ; 127(45): 9734-9746, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37936402

RESUMEN

IA3 is a 68 amino acid natural peptide/protein inhibitor of yeast aspartic proteinase A (YPRA) that is intrinsically disordered in solution with induced N-terminal helicity when in the protein complex with YPRA. Based on the intrinsically disordered protein (IDP) parameters of fractional net charge (FNC), net charge density per residue (NCPR), and charge patterning (κ), the two domains of IA3 are defined to occupy different domains within conformationally based subclasses of IDPs, thus making IA3 a bimodal domain IDP. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and low-field Overhauser dynamic nuclear polarization (ODNP) spectroscopy results show that these two domains possess different degrees of compaction and hydration diffusivity behavior. This work suggests that SDSL EPR line shapes, analyzed in terms of their local tumbling volume (VL), provide insights into the compaction of the unstructured IDP ensemble in solution and that protein sequence and net charge distribution patterns within a conformational subclass can impact bound water hydration dynamics, thus possibly offering an alternative thermodynamic property that can encode conformational binding and behavior of IDPs and liquid-liquid phase separations.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Saccharomyces cerevisiae , Espectroscopía de Resonancia por Spin del Electrón/métodos , Conformación Proteica , Marcadores de Spin , Secuencia de Aminoácidos , Proteínas Intrínsecamente Desordenadas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA