Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(14): e202217023, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36757113

RESUMEN

Compared with conventional, solution-phase approaches, solid-state reaction methods can provide unique access to novel synthetic targets. Nanothreads-one-dimensional diamondoid polymers formed through the compression of small molecules-represent a new class of materials produced via solid-state reactions, however, the formation of chemically homogeneous products with targeted functionalization represents a persistent challenge. Through careful consideration of molecular precursor stacking geometry and functionalization, we report here the scalable synthesis of chemically homogeneous, functionalized nanothreads through the solid-state polymerization of 2,5-furandicarboxylic acid. The resulting product possesses high-density, pendant carboxyl functionalization along both sides of the backbone, enabling new opportunities for the post-synthetic processing and chemical modification of nanothread materials applicable to a broad range of potential applications.

2.
J Am Chem Soc ; 144(5): 2073-2078, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35077643

RESUMEN

Nanothreads are one-dimensional nanomaterials composed of a primarily sp3 hydrocarbon backbone, typically formed through the compression of small molecules to high pressures. Although nanothreads have been synthesized from a range of precursors, controlling reaction pathways to produce atomically precise materials remains a difficult challenge. Here, we show how heteroatoms within precursors can serve as "thread-directing" groups by selecting for specific cycloaddition reaction pathways. By using a less-reactive diazine group within a six-membered aromatic ring, we successfully predict and synthesize the first carbon nanothread material derived from pyridazine (1,2-diazine, C4H4N2). Compared with previous nanothreads, the synthesized polypyridazine, shows a predominantly uniform chemical structure with exceptional long-range order, allowing for structural characterization using vibrational spectroscopy and X-ray diffraction. The results demonstrate how thread-directing groups can be used for reaction pathway control and the formation of chemically precise nanothreads with a high degree of structural order.

3.
Inorg Chem ; 61(38): 15037-15044, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36083270

RESUMEN

The environmentally benign metal-organic framework (MOF) CUK-1 based on 2,4-pyridine dicarboxylate has been prepared for the first time using Mn(II) as the inorganic node and water as the only solvent. Mn-CUK-1 shows reversible and efficient capture of H2O, SO2, and H2S. Compared to previously studied Co(II) and Mg(II) versions of the same MOF, Mn-CUK-1 also exhibited unique temperature-induced structural flexibility due to organic linker torsion, as detailed by variable-temperature single-crystal X-ray diffraction studies. Owing to this inherent solid-state flexibility, Mn-CUK-1 showed stepwise adsorption for polar gases, which induce structural deformations upon adsorption, while the nonpolar guest adsorbates were reversibly sorbed in a more classical manner. Notably, Mn-CUK-1 demonstrates the highest reported H2S capacity-to-surface area ratio among MOFs that are chemically stable toward this reactive acidic molecule. Moreover, Mn-CUK-1 displays exceptional structural stability in the presence of high relative humidity and corrosive gases and shows soft crystalline behavior triggered by changes in both the adsorption temperature and guest molecule identity.

4.
Molecules ; 26(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299563

RESUMEN

A new terthiophene-based imidazole luminophore 5,5'-(1H-thieno[3,4-d]imidazole-4,6-diyl)bis(thiophene-2-carboxylic acid) (TIBTCH2, 5) was synthesized in one step from previously reported 4,6-di(thiophen-2-yl)-1H-thieno[3,4-d]imidazole (DTTI, 4), and their photophysical properties were studied and compared accordingly. Under solvothermal conditions, reacting 5 with Mn(OAc)2 yielded a new three-dimensional metal-organic framework (MOF, 6) which was structurally defined by single-crystal X-ray diffraction. In 6, all Mn(II) ions octahedrally bind to carboxylate-O atoms to form a linear Mn3 secondary building unit (SBU) that contains three distinct coordination modes. Importantly, 6 exhibits dual functional properties of ligand-based emission and metal-based magnetic behaviors.

5.
J Am Chem Soc ; 142(14): 6467-6471, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32186873

RESUMEN

A large-pore version of Mg-CUK-1, a water-stable metal-organic framework (MOF) with 1-D channels, was synthesized in basic water. Mg-CUK-1L has a BET surface area of 2896 m2 g-1 and shows stark selectivity for CO2 sorption over N2, O2, H2, and CH4. It displays reversible, multistep gated sorption of CO2 below 0.33 atm. The dehydrated single-crystal structure of Mg-CUK-1L confirms retention of the open-channel structure. The MOF can be loaded with organic molecules by immersion in hot melts, providing single crystals suitable for X-ray diffraction. trans-Azobenzene fills the channels in a 2 × 2 arrangement. Solid-state UV-vis spectroscopy reveals that azobenzene molecules undergo reversible trans-cis isomerization, despite being close-packed; this surprising result is confirmed by DFT-simulated UV-vis spectra.

6.
J Am Chem Soc ; 140(31): 9806-9809, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30029575

RESUMEN

ACM-1 is the first example of an organoarsine metal-organic framework (MOF), prepared using a new pyridyl-functionalized triarylarsine ligand coordinated to Ni(II) nodes. ACM-1 has micropores that are decorated with cis-diarsine coordination pockets. Postsynthetic metalation of ACM-1 with AuCl under facile conditions studied by single-crystal X-ray diffraction reveals the installation of dimeric Au2Cl2 complexes via the formation of As-Au bonds. The Au(I) dimers display exceptionally short aurophilic bonds (2.76 Å) induced by the rigidity of the MOF, which acts as a unique solid-state ligand.

7.
Angew Chem Int Ed Engl ; 57(30): 9295-9299, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-29750858

RESUMEN

PCM-101 is a phosphine coordination material comprised of tris(p-carboxylato)triphenylphosphine and secondary pillaring groups coordinated to [M3 (OH)]5+ nodes (M=Co, Ni). PCM-101 has a unique topology in which R3 P: sites are arranged directly trans to one another, with a P⋅⋅⋅P separation distance dictated by the pillars. Post-synthetic coordination of soft metals to the P: sites proceeds at room temperature to provide X-ray quality crystals that permit full structural resolution. Addition of AuCl groups forces a large distortion of the parent framework. In contrast, CuBr undergoes insertion directly between the trans-P sites to form dimers that mimic solution-phase complexes, but that are geometrically strained due to steric pressure exerted by the MOF scaffold. The metalated materials are active in heterogeneous hydroaddition catalysis under mild conditions, yielding different major products compared to their molecular counterparts.

8.
Angew Chem Int Ed Engl ; 55(40): 12351-5, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27532740

RESUMEN

A tetra(carboxylated) PCP pincer ligand has been synthesized as a building block for porous coordination polymers (PCPs). The air- and moisture-stable PCP metalloligands are rigid tetratopic linkers that are geometrically akin to ligands used in the synthesis of robust metal-organic frameworks (MOFs). Here, the design principle is demonstrated by cyclometalation with Pd(II) Cl and subsequent use of the metalloligand to prepare a crystalline 3D MOF by direct reaction with Co(II) ions and structural resolution by single crystal X-ray diffraction. The Pd-Cl groups inside the pores are accessible to post-synthetic modifications that facilitate chemical reactions previously unobserved in MOFs: a Pd-CH3 activated material undergoes rapid insertion of CO2 gas to give Pd-OC(O)CH3 at 1 atm and 298 K. However, since the material is highly selective for the adsorption of CO2 over CO, a Pd-N3 modified version resists CO insertion under the same conditions.

9.
J Phys Chem Lett ; 15(9): 2344-2351, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38387075

RESUMEN

Compression of small molecules can induce solid-state reactions that are difficult or impossible under conventional, solution-phase conditions. Of particular interest is the topochemical-like reaction of arenes to produce polymeric nanomaterials. However, high reaction onset pressures and poor selectivity remain significant challenges. Herein, the incorporation of electron-withdrawing and -donating groups into π-stacked arenes is proposed as a strategy to reduce reaction barriers to cycloaddition and onset pressures. Nevertheless, competing side-chain reactions between functional groups represent alternative viable pathways. For the case of a diaminobenzene:tetracyanobenzene cocrystal, amidine formation between amine and cyano groups occurs prior to cycloaddition with an onset pressure near 9 GPa, as determined using vibrational spectroscopy, X-ray diffraction, and first-principles calculations. This work demonstrates that reduced-barrier cycloaddition reactions are theoretically possible via strategic functionalization; however, the incorporation of pendant groups may enable alternative reaction pathways. Controlled reactions between pendant groups represent an additional strategy for producing unique polymeric nanomaterials.

10.
ACS Appl Mater Interfaces ; 14(6): 8126-8136, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35119825

RESUMEN

A combined experimental and theoretical study of H2 adsorption was carried out in Co-CUK-1 and Mg-CUK-1, two isostructural metal-organic frameworks (MOFs) that consist of M2+ ions (M = Co and Mg) coordinated to pyridine-2,4-dicarboxylate (pdc2-) and OH- ligands. These MOFs possess saturated metal centers in distorted octahedral environments and narrow pore sizes and display high chemical and thermal stability. Previous experimental studies revealed that Co-CUK-1 exhibits a H2 uptake of 183 cm3 g-1 at 77 K/1.0 atm [ Angew. Chem., Int. Ed. 2007, 46, 272-275, DOI: 10.1002/anie.200601627], while that for Mg-CUK-1 under the same conditions is 240 cm3 g-1 on the basis of the experimental measurements carried out herein. The theoretical H2 adsorption isotherms are in close agreement with the corresponding experimental measurements for simulations using electrostatic and polarizable potentials of the adsorbate. Through simulated annealing calculations, it was found that the primary binding site for H2 in both isostructural analogues is localized proximal to the center of the aromatic rings belonging to the pdc2- linkers. Inelastic neutron scattering (INS) spectroscopic studies of H2 adsorbed in both MOFs revealed a rotational tunnelling transition occurring at around 8 meV in the corresponding spectra; this peak represents H2 adsorbed at the primary binding site. Two-dimensional quantum rotation calculations for H2 localized at the primary and secondary binding sites in both MOFs yielded rotational energy levels that are in agreement with the transitions observed in the INS spectra. Even though both M-CUK-1 analogues possess different metal ions, they exhibit similar electrostatic environments, modeled structures at H2 saturation, and rotational potentials for H2 adsorbed at the most favorable adsorption site. Overall, this study demonstrates how important molecular-level details of the H2 adsorption mechanism inside MOF micropores can be derived from a combination of experimental measurements and theoretical calculations using two stable and isostructural MOFs with saturated metal centers and small pore windows as model systems.

11.
Chem Commun (Camb) ; 56(8): 1286-1289, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31904031

RESUMEN

Controlled partial decomposition of 2-selenonicotinic acid in the presence of Co2+ or Ni2+ resulted in the in situ formation of an unusual MOF based on triselenane ligands (RSeSeSeR) coordinated to M2+ centers as NSeN-pincers. Post-synthetic oxidation by treatment with aqueous H2O2 facilitates its solid-state conversion into a RSeO2- molecular coordination complex, which was tracked via powder X-ray diffraction studies and by single-crystal structural resolution of the final product.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA