Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 22(1): 341, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35836134

RESUMEN

In contrast to most land plant species, sorbitol, instead of sucrose, is the major photosynthetic product in many Rosaceae species. It has been well illustrated that three key functional genes encoding sorbitol-6-phosphate dehydrogenase (S6PDH), sorbitol dehydrogenase (SDH), and sorbitol transporter (SOT), are mainly responsible for the synthesis, degradation and transportation of sorbitol. In this study, the genome-wide identification of S6PDH, SDH and SOT genes was conducted in four Rosaceae species, peach, mei, apple and pear, and showed the sorbitol bio-pathway to be dominant (named sorbitol present group, SPG); another three related species, including tomato, poplar and Arabidopsis, showed a non-sorbitol bio-pathway (named sorbitol absent group, SAG). To understand the evolutionary differences of the three important gene families between SAG and SPG, their corresponding gene duplication, evolutionary rate, codon bias and positive selection patterns have been analyzed and compared. The sorbitol pathway genes in SPG were found to be expanded through dispersed and tandem gene duplications. Branch-specific model analyses revealed SDH and S6PDH clade A were under stronger purifying selection in SPG. A higher frequency of optimal codons was found in S6PDH and SDH than that of SOT in SPG, confirming the purifying selection effect on them. In addition, branch-site model analyses revealed SOT genes were under positive selection in SPG. Expression analyses showed diverse expression patterns of sorbitol-related genes. Overall, these findings provide new insights in the evolutionary characteristics for the three key sorbitol metabolism-related gene families in Rosaceae and other non-sorbitol dominant pathway species.


Asunto(s)
Pyrus , Rosaceae , Solanum lycopersicum , Evolución Biológica , Metabolismo de los Hidratos de Carbono , Solanum lycopersicum/genética , Filogenia , Pyrus/metabolismo , Rosaceae/genética , Sorbitol/metabolismo
2.
BMC Plant Biol ; 22(1): 452, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131258

RESUMEN

BACKGROUND: European canker, caused by the fungal pathogen Neonectria ditissima, is an economically damaging disease in apple producing regions of the world - especially in areas with moderate temperatures and high rainfall. The pathogen has a wide host range of hardwood perennial species, causing trunk cankers, dieback and branch lesions in its hosts. Although apple scion germplasm carrying partial resistance to the disease has been described, little is still known of the genetic basis for this quantitative resistance. RESULTS: Resistance to Neonectria ditissima was studied in a multiparental population of apple scions using several phenotyping methods. The studied population consists of individuals from multiple families connected through a common pedigree. The degree of disease of each individual in the population was assessed in three experiments: artificial inoculations of detached dormant shoots, potted trees in a glasshouse and in a replicated field experiment. The genetic basis of the differences in disease was studied using a pedigree-based analysis (PBA). Three quantitative trait loci (QTL), on linkage groups (LG) 6, 8 and 10 were identified in more than one of the phenotyping strategies. An additional four QTL, on LG 2, 5, 15 and 16 were only identified in the field experiment. The QTL on LG2 and 16 were further validated in a biparental population. QTL effect sizes were small to moderate with 4.3 to 19% of variance explained by a single QTL. A subsequent analysis of QTL haplotypes revealed a dynamic response to this disease, in which the estimated effect of a haplotype varied over the field time-points. CONCLUSIONS: This study describes the first identified QTL associated with resistance to N. ditissima in apple scion germplasm. The results from this study show that QTL present in germplasm commonly used in apple breeding have a low to medium effect on resistance to N. ditissima. Hence, multiple QTL will need to be considered to improve resistance through breeding.


Asunto(s)
Hypocreales , Malus , Resistencia a la Enfermedad/genética , Hypocreales/fisiología , Malus/genética , Malus/microbiología , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
3.
Planta ; 256(5): 90, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171415

RESUMEN

MAIN CONCLUSION: This manuscript identifies cherry orthologues of genes implicated in the development of pericarpic fruit and pinpoints potential options and restrictions in the use of these targets for commercial exploitation of parthenocarpic cherry fruit. Cherry fruit contain a large stone and seed, making processing of the fruit laborious and consumption by the consumer challenging, inconvenient to eat 'on the move' and potentially dangerous for children. Availability of fruit lacking the stone and seed would be potentially transformative for the cherry industry, since such fruit would be easier to process and would increase consumer demand because of the potential reduction in costs. This review will explore the background of seedless fruit, in the context of the ambition to produce the first seedless cherry, carry out an in-depth analysis of the current literature around parthenocarpy in fruit, and discuss the available technology and potential for producing seedless cherry fruit as an 'ultimate snacking product' for the twenty-first century.


Asunto(s)
Frutas , Bocadillos , Frutas/genética , Semillas/genética
4.
Plant J ; 103(3): 1103-1124, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32344462

RESUMEN

Although the biochemical and genetic basis of lipid metabolism is clear in Arabidopsis, there is limited information concerning the relevant genes in Glycine max (soybean). To address this issue, we constructed three-dimensional genetic networks using six seed oil-related traits, 52 lipid metabolism-related metabolites and 54 294 SNPs in 286 soybean accessions in total. As a result, 284 and 279 candidate genes were found to be significantly associated with seed oil-related traits and metabolites by phenotypic and metabolic genome-wide association studies and multi-omics analyses, respectively. Using minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) analyses, six seed oil-related traits were found to be significantly related to 31 metabolites. Among the above candidate genes, 36 genes were found to be associated with oil synthesis (27 genes), amino acid synthesis (four genes) and the tricarboxylic acid (TCA) cycle (five genes), and four genes (GmFATB1a, GmPDAT, GmPLDα1 and GmDAGAT1) are already known to be related to oil synthesis. Using this information, 133 three-dimensional genetic networks were constructed, 24 of which are known, e.g. pyruvate-GmPDAT-GmFATA2-oil content. Using these networks, GmPDAT, GmAGT and GmACP4 reveal the genetic relationships between pyruvate and the three major nutrients, and GmPDAT, GmZF351 and GmPgs1 reveal the genetic relationships between amino acids and seed oil content. In addition, GmCds1, along with average temperature in July and the rainfall from June to September, influence seed oil content across years. This study provides a new approach for the construction of three-dimensional genetic networks and reveals new information for soybean seed oil improvement and the identification of gene function.


Asunto(s)
Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Glycine max/genética , Semillas/genética , Aceite de Soja/genética , Estudio de Asociación del Genoma Completo , Metabolismo de los Lípidos/genética , Mapas de Interacción de Proteínas/genética , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Semillas/metabolismo , Aceite de Soja/metabolismo , Glycine max/metabolismo
5.
BMC Plant Biol ; 21(1): 256, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34088272

RESUMEN

BACKGROUND: Pears and apples are both perennial deciduous trees of the Rosaceae family, and both are important economic fruit trees worldwide. The emergence of many varieties in the market has been mostly domesticated from wild to cultivated and regulated by the differential expression of genes. However, the molecular process and pathways underlying this phenomenon remain unclear. Four typical wild and cultivar pear and apple trees at three developmental stages were used in our study to investigate the molecular process at the transcriptome level. RESULT: Physiological observations indicated the obvious differences of size, weight, sugar acid content and peel color in wild and cultivar fruit among each developmental stage. Using next-generation sequencing based RNA-seq expression profiling technology, we produced a transcriptome in procession of a large fraction of annotated pear and apple genes, and provided a molecular basis underlying the phenomenon of wild and cultivar fruit tree differences. 5921 and 5744 differential expression genes were identified in pear and apple at three developmental stages respectively. We performed temporal and spatial differential gene expression profiling in developing fruits. Several key pathways such as signal transduction, photosynthesis, translation and many metabolisms were identified as involved in the differentiation of wild and cultivar fruits. CONCLUSION: In this study, we reported on the next-generation sequencing study of the temporal and spatial mRNA expression profiling of pear and apple fruit trees. Also, we demonstrated that the integrated analysis of pear and apple transcriptome, which strongly revealed the consistent process of domestication in Rosaceae fruit trees. The results will be great influence to the improvement of cultivar species and the utilization of wild resources.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Malus/genética , Pyrus/genética , RNA-Seq/métodos , Frutas/crecimiento & desarrollo , ARN de Planta , Especificidad de la Especie , Factores de Tiempo
6.
Brief Bioinform ; 20(5): 1913-1924, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30032279

RESUMEN

In the genetic system that regulates complex traits, metabolites, gene expression levels, RNA editing levels and DNA methylation, a series of small and linked genes exist. To date, however, little is known about how to design an efficient framework for the detection of these kinds of genes. In this article, we propose a genome-wide composite interval mapping (GCIM) in F2. First, controlling polygenic background via selecting markers in the genome scanning of linkage analysis was replaced by estimating polygenic variance in a genome-wide association study. This can control large, middle and minor polygenic backgrounds in genome scanning. Then, additive and dominant effects for each putative quantitative trait locus (QTL) were separately scanned so that a negative logarithm P-value curve against genome position could be separately obtained for each kind of effect. In each curve, all the peaks were identified as potential QTLs. Thus, almost all the small-effect and linked QTLs are included in a multi-locus model. Finally, adaptive least absolute shrinkage and selection operator (adaptive lasso) was used to estimate all the effects in the multi-locus model, and all the nonzero effects were further identified by likelihood ratio test for true QTL identification. This method was used to reanalyze four rice traits. Among 25 known genes detected in this study, 16 small-effect genes were identified only by GCIM. To further demonstrate GCIM, a series of Monte Carlo simulation experiments was performed. As a result, GCIM is demonstrated to be more powerful than the widely used methods for the detection of closely linked and small-effect QTLs.


Asunto(s)
Modelos Genéticos , Sitios de Carácter Cuantitativo , Metilación de ADN , Ligamiento Genético , Humanos , Método de Montecarlo
7.
Brief Bioinform ; 19(4): 700-712, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28158525

RESUMEN

The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS.


Asunto(s)
Algoritmos , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Teorema de Bayes , Simulación por Computador , Modelos Lineales , Modelos Genéticos , Herencia Multifactorial , Fenotipo
8.
Ecotoxicol Environ Saf ; 202: 110917, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32800252

RESUMEN

Cadmium (Cd) is an extremely toxic environmental pollutant with high mobility in soils, which can contaminate groundwater, increasing its risk of entering the food chain. Yeast biosorption can be a low-cost and effective method for removing Cd from contaminated aqueous solutions. We transformed wild-type Saccharomyces cerevisiae (WT) with two versions of a Populus trichocarpa gene (PtMT2b) coding for a metallothionein: one with the original sequence (PtMT2b 'C') and the other with a mutated sequence, with an amino acid substitution (C3Y, named here: PtMT2b 'Y'). WT and both transformed yeasts were grown under Cd stress, in agar (0; 10; 20; 50 µM Cd) and liquid medium (0; 10; 20 µM Cd). Yeast growth was assessed visually and by spectrometry OD600. Cd removal from contaminated media and intracellular accumulation were also quantified. PtMT2b 'Y' was also inserted into mutant strains: fet3fet4, zrt1zrt2 and smf1, and grown under Fe-, Zn- and Mn-deficient media, respectively. Yeast strains had similar growth under 0 µM, but differed under 20 µM Cd, the order of tolerance was: WT < PtMT2b 'C' < PtMT2b 'Y', the latter presenting 37% higher growth than the strain with PtMT2b 'C'. It also extracted ~80% of the Cd in solution, and had higher intracellular Cd than WT. Mutant yeasts carrying PtMT2b 'Y' had slightly higher growth in Mn- and Fe-deficient media than their non-transgenic counterparts, suggesting the transgenic protein may chelate these metals. S. cerevisiae carrying the altered poplar gene offers potential for bioremediation of Cd from wastewaters or other contaminated liquids.


Asunto(s)
Biodegradación Ambiental , Cadmio/metabolismo , Metalotioneína/genética , Proteínas de Plantas/genética , Populus/genética , Saccharomyces cerevisiae/genética , Contaminantes del Suelo/metabolismo , Cadmio/toxicidad , Metalotioneína/metabolismo , Metales Pesados/análisis , Populus/metabolismo , Saccharomyces cerevisiae/metabolismo , Suelo
9.
J Proteome Res ; 17(9): 3061-3074, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30091610

RESUMEN

Although the legume-rhizobium symbiosis is a most-important biological process, there is a limited knowledge about the protein interaction network between host and symbiont. Using interolog- and domain-based approaches, we constructed an interspecies protein interactome containing 5115 protein-protein interactions between 2291 Glycine max and 290 Bradyrhizobium diazoefficiens USDA 110 proteins. The interactome was further validated by the expression pattern analysis in nodules, gene ontology term semantic similarity, co-expression analysis, and luciferase complementation image assay. In the G. max-B. diazoefficiens interactome, bacterial proteins are mainly ion channel and transporters of carbohydrates and cations, while G. max proteins are mainly involved in the processes of metabolism, signal transduction, and transport. We also identified the top 10 highly interacting proteins (hubs) for each species. Kyoto Encyclopedia of Genes and Genomes pathway analysis for each hub showed that a pair of 14-3-3 proteins (SGF14g and SGF14k) and 5 heat shock proteins in G. max are possibly involved in symbiosis, and 10 hubs in B. diazoefficiens may be important symbiotic effectors. Subnetwork analysis showed that 18 symbiosis-related soluble N-ethylmaleimide sensitive factor attachment protein receptor proteins may play roles in regulating bacterial ion channels, and SGF14g and SGF14k possibly regulate the rhizobium dicarboxylate transport protein DctA. The predicted interactome provide a valuable basis for understanding the molecular mechanism of nodulation in soybean.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bradyrhizobium/metabolismo , Biología Computacional/métodos , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Bradyrhizobium/genética , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Expresión Génica , Ontología de Genes , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Anotación de Secuencia Molecular , Fijación del Nitrógeno/fisiología , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Glycine max/genética , Glycine max/microbiología , Simbiosis/fisiología
10.
BMC Plant Biol ; 18(1): 328, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514240

RESUMEN

BACKGROUND: Rapeseed (Brassica napus L.) and soybean (Glycine max L.) seeds are rich in both protein and oil, which are major sources of biofuels and nutrition. Although the difference in seed oil content between soybean (~ 20%) and rapeseed (~ 40%) exists, little is known about its underlying molecular mechanism. RESULTS: An integrated omics analysis was performed in soybean, rapeseed, Arabidopsis (Arabidopsis thaliana L. Heynh), and sesame (Sesamum indicum L.), based on Arabidopsis acyl-lipid metabolism- and carbon metabolism-related genes. As a result, candidate genes and their transcription factors and microRNAs, along with phylogenetic analysis and co-expression network analysis of the PEPC gene family, were found to be largely associated with the difference between the two species. First, three soybean genes (Glyma.13G148600, Glyma.13G207900 and Glyma.12G122900) co-expressed with GmPEPC1 are specifically enriched during seed storage protein accumulation stages, while the expression of BnPEPC1 is putatively inhibited by bna-miR169, and two genes BnSTKA and BnCKII are co-expressed with BnPEPC1 and are specifically associated with plant circadian rhythm, which are related to seed oil biosynthesis. Then, in de novo fatty acid synthesis there are rapeseed-specific genes encoding subunits ß-CT (BnaC05g37990D) and BCCP1 (BnaA03g06000D) of heterogeneous ACCase, which could interfere with synthesis rate, and ß-CT is positively regulated by four transcription factors (BnaA01g37250D, BnaA02g26190D, BnaC01g01040D and BnaC07g21470D). In triglyceride synthesis, GmLPAAT2 is putatively inhibited by three miRNAs (gma-miR171, gma-miR1516 and gma-miR5775). Finally, in rapeseed there was evidence for the expansion of gene families, CALO, OBO and STERO, related to lipid storage, and the contraction of gene families, LOX, LAH and HSI2, related to oil degradation. CONCLUSIONS: The molecular mechanisms associated with differences in seed oil content provide the basis for future breeding efforts to improve seed oil content.


Asunto(s)
Brassica napus/metabolismo , Glycine max/metabolismo , Aceite de Brassica napus/análisis , Semillas/química , Aceite de Soja/análisis , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica napus/química , Brassica napus/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Lípidos/biosíntesis , Redes y Vías Metabólicas/genética , MicroARNs/genética , Filogenia , Aceites de Plantas/análisis , Aceites de Plantas/metabolismo , Aceite de Brassica napus/metabolismo , Alineación de Secuencia , Sesamum/química , Sesamum/genética , Sesamum/metabolismo , Aceite de Soja/metabolismo , Glycine max/química , Glycine max/genética , Factores de Transcripción/genética
11.
Plant Biotechnol J ; 16(1): 4-17, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28985014

RESUMEN

Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology.


Asunto(s)
Biotecnología/métodos , Cacao/genética , Genética , Genómica/métodos , Técnicas de Embriogénesis Somática de Plantas
12.
Heredity (Edinb) ; 120(3): 208-218, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29234158

RESUMEN

Although nonparametric methods in genome-wide association studies (GWAS) are robust in quantitative trait nucleotide (QTN) detection, the absence of polygenic background control in single-marker association in genome-wide scans results in a high false positive rate. To overcome this issue, we proposed an integrated nonparametric method for multi-locus GWAS. First, a new model transformation was used to whiten the covariance matrix of polygenic matrix K and environmental noise. Using the transferred model, Kruskal-Wallis test along with least angle regression was then used to select all the markers that were potentially associated with the trait. Finally, all the selected markers were placed into multi-locus model, these effects were estimated by empirical Bayes, and all the nonzero effects were further identified by a likelihood ratio test for true QTN detection. This method, named pKWmEB, was validated by a series of Monte Carlo simulation studies. As a result, pKWmEB effectively controlled false positive rate, although a less stringent significance criterion was adopted. More importantly, pKWmEB retained the high power of Kruskal-Wallis test, and provided QTN effect estimates. To further validate pKWmEB, we re-analyzed four flowering time related traits in Arabidopsis thaliana, and detected some previously reported genes that were not identified by the other methods.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Modelos Genéticos , Herencia Multifactorial , Arabidopsis/genética , Arabidopsis/fisiología , Teorema de Bayes , Simulación por Computador , Flores/genética , Flores/fisiología , Funciones de Verosimilitud , Método de Montecarlo
13.
BMC Genomics ; 16: 301, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25887996

RESUMEN

BACKGROUND: Somatic embryogenesis (SE) in plants is a process by which embryos are generated directly from somatic cells, rather than from the fused products of male and female gametes. Despite the detailed expression analysis of several somatic-to-embryonic marker genes, a comprehensive understanding of SE at a molecular level is still lacking. The present study was designed to generate high resolution transcriptome datasets for early SE providing the way for future research to understand the underlying molecular mechanisms that regulate this process. We sequenced Arabidopsis thaliana somatic embryos collected from three distinct developmental time-points (5, 10 and 15 d after in vitro culture) using the Illumina HiSeq 2000 platform. RESULTS: This study yielded a total of 426,001,826 sequence reads mapped to 26,520 genes in the A. thaliana reference genome. Analysis of embryonic cultures after 5 and 10 d showed differential expression of 1,195 genes; these included 778 genes that were more highly expressed after 5 d as compared to 10 d. Moreover, 1,718 genes were differentially expressed in embryonic cultures between 10 and 15 d. Our data also showed at least eight different expression patterns during early SE; the majority of genes are transcriptionally more active in embryos after 5 d. Comparison of transcriptomes derived from somatic embryos and leaf tissues revealed that at least 4,951 genes are transcriptionally more active in embryos than in the leaf; increased expression of genes involved in DNA cytosine methylation and histone deacetylation were noted in embryogenic tissues. In silico expression analysis based on microarray data found that approximately 5% of these genes are transcriptionally more active in somatic embryos than in actively dividing callus and non-dividing leaf tissues. Moreover, this identified 49 genes expressed at a higher level in somatic embryos than in other tissues. This included several genes with unknown function, as well as others related to oxidative and osmotic stress, and auxin signalling. CONCLUSIONS: The transcriptome information provided here will form the foundation for future research on genetic and epigenetic control of plant embryogenesis at a molecular level. In follow-up studies, these data could be used to construct a regulatory network for SE; the genes more highly expressed in somatic embryos than in vegetative tissues can be considered as potential candidates to validate these networks.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica , Genoma de Planta , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Embriogénesis Somática de Plantas , Semillas/genética , Análisis de Secuencia de ARN , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
J Exp Bot ; 66(21): 6651-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26272901

RESUMEN

5-Hydroxymethylcytosine (5hmC), a modified form of cytosine that is considered the sixth nucleobase in DNA, has been detected in mammals and is believed to play an important role in gene regulation. In this study, 5hmC modification was detected in rice by employing a dot-blot assay, and its levels was further quantified in DNA from different rice tissues using liquid chromatography-multistage mass spectrometry (LC-MS/MS/MS). The results showed large intertissue variation in 5hmC levels. The genome-wide profiles of 5hmC modification in three different rice cultivars were also obtained using a sensitive chemical labelling followed by a next-generation sequencing method. Thousands of 5hmC peaks were identified, and a comparison of the distributions of 5hmC among different rice cultivars revealed the specificity and conservation of 5hmC modification. The identified 5hmC peaks were significantly enriched in heterochromatin regions, and mainly located in transposable elements (TEs), especially around retrotransposons. The correlation analysis of 5hmC and gene expression data revealed a close association between 5hmC and silent TEs. These findings provide a resource for plant DNA 5hmC epigenetic studies and expand our knowledge of 5hmC modification.


Asunto(s)
Citosina/análogos & derivados , ADN de Plantas/genética , Epigénesis Genética , Oryza/genética , 5-Metilcitosina/análogos & derivados , Cromatografía Liquida , Mapeo Cromosómico , Citosina/metabolismo , Elementos Transponibles de ADN , ADN de Plantas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Oryza/metabolismo , Análisis de Secuencia de ADN , Espectrometría de Masas en Tándem
15.
BMC Genomics ; 15: 444, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24906560

RESUMEN

BACKGROUND: Lipoxygenases (LOXs), a type of non-haem iron-containing dioxygenase, are ubiquitous enzymes in plants and participate in the formation of fruit aroma which is a very important aspect of fruit quality. Amongst the various aroma volatiles, saturated and unsaturated alcohols and aldehydes provide the characteristic aroma of the fruit. These compounds are formed from unsaturated fatty acids through oxidation, pyrolysis and reduction steps. This biosynthetic pathway involves at least four enzymes, including LOX, the enzyme responsible for lipid oxidation. Although some studies have been conducted on the LOX gene family in several species including Arabidopsis, soybean, cucumber and apple, there is no information from pear; and the evolutionary history of this gene family in the Rosaceae is still not resolved. RESULTS: In this study we identified 107 LOX homologous genes from five Rosaceous species (Pyrus bretschneideri, Malus × domestica, Fragaria vesca, Prunus mume and Prunus persica); 23 of these sequences were from pear. By using structure analysis, phylogenic analysis and collinearity analysis, we identified variation in gene structure and revealed the phylogenetic evolutionary relationship of this gene family. Expression of certain pear LOX genes during fruit development was verified by analysis of transcriptome data. CONCLUSIONS: 23 LOX genes were identified in pear and these genes were found to have undergone a duplication 30-45 MYA; most of these 23 genes are functional. Specific gene duplication was found on chromosome4 in the pear genome. Useful information was provided for future research on the evolutionary history and transgenic research on LOX genes.


Asunto(s)
Lipooxigenasa/genética , Familia de Multigenes , Proteínas de Plantas/genética , Pyrus/enzimología , Cromosomas de las Plantas , Evolución Molecular , Duplicación de Gen , Perfilación de la Expresión Génica , Variación Genética , Filogenia , Pyrus/genética , Rosaceae/clasificación , Rosaceae/genética , Análisis de Secuencia de ADN
16.
Mol Biol Evol ; 30(12): 2602-11, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24008584

RESUMEN

Root nodule symbiosis (RNS) is one of the most efficient biological systems for nitrogen fixation and it occurs in 90% of genera in the Papilionoideae, the largest subfamily of legumes. Most papilionoid species show evidence of a polyploidy event that occurred approximately 58 Ma. Although polyploidy is considered to be an important evolutionary force in plants, the role of this papilionoid polyploidy event, especially its association with RNS, is not understood. In this study, we explored this role using an integrated comparative genomic approach and conducted gene expression comparisons and gene ontology enrichment analyses. The results show the following: 1) Approximately a quarter of the papilionoid-polyploidy-derived duplicate genes are retained; 2) there is a striking divergence in the level of expression of gene duplicate pairs derived from the polyploidy event; and 3) the retained duplicates are frequently involved in the processes crucial for RNS establishment, such as symbiotic signaling, nodule organogenesis, rhizobial infection, and nutrient exchange and transport. Thus, we conclude that the papilionoid polyploidy event might have further refined RNS and induced a more robust and enhanced symbiotic system. This conclusion partly explains the widespread occurrence of the Papilionoideae.


Asunto(s)
Fabaceae/genética , Fabaceae/microbiología , Poliploidía , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis/genética , Evolución Molecular , Fabaceae/clasificación , Fabaceae/fisiología , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas , Genoma de Planta , Genómica , Fijación del Nitrógeno/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/fisiología
18.
Plants (Basel) ; 13(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38498553

RESUMEN

High concentrations of toxic cadmium (Cd) in soils are problematic as the element accumulates in food crops such as rice and cacao. A mitigation strategy to minimise Cd accumulation is to enhance the competitive uptake of plant-essential metals. Theobroma cacao seedlings were grown hydroponically with added Cd. Eight different treatments were used, which included/excluded hydroponic or foliar zinc (Zn) and/or iron (Fe) for the final growth period. Analyses of Cd concentrations and natural stable isotope compositions by multiple collector ICP-MS were conducted. Cadmium uptake and translocation decreased when Fe was removed from the hydroponic solutions, while the application of foliar Zn-EDTA may enhance Cd translocation. No significant differences in isotope fractionation during uptake were found between treatments. Data from all treatments fit a single Cd isotope fractionation model associated with sequestration (seq) of isotopically light Cd in roots and unidirectional mobilisation (mob) of isotopically heavier Cd to the leaves (ε114Cdseq-mob = -0.13‱). This result is in excellent agreement with data from an investigation of 19 genetically diverse cacao clones. The different Cd dynamics exhibited by the clones and seen in response to different Fe availability may be linked to similar physiological processes, such as the regulation of specific transporter proteins.

19.
Front Plant Sci ; 15: 1376061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742212

RESUMEN

Powdery mildew is one of the most problematic diseases in strawberry production. To date, few commercial strawberry cultivars are deemed to have complete resistance and as such, an extensive spray programme must be implemented to control the pathogen. Here, a large-scale field experiment was used to determine the powdery mildew resistance status of leaf and fruit tissues across a diverse panel of strawberry genotypes. This phenotypic data was used to identify Quantitative Trait Nucleotides (QTN) associated with tissue-specific powdery mildew resistance. In total, six stable QTN were found to be associated with foliar resistance, with one QTN on chromosome 7D associated with a 61% increase in resistance. In contrast to the foliage results, there were no QTN associated with fruit disease resistance and there was a high level of resistance observed on strawberry fruit, with no genetic correlation observed between fruit and foliar symptoms, indicating a tissue-specific response. Beyond the identification of genetic loci, we also demonstrate that genomic selection can lead to rapid gains in foliar resistance across genotypes, with the potential to capture >50% of the genetic foliage resistance present in the population. To date, breeding of robust powdery mildew resistance in strawberry has been impeded by the quantitative nature of natural resistance and a lack of knowledge relating to the genetic control of the trait. These results address this shortfall, through providing the community with a wealth of information that could be utilized for genomic informed breeding, implementation of which could deliver a natural resistance strategy for combatting powdery mildew.

20.
Mol Biol Evol ; 29(10): 3227-36, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22586327

RESUMEN

Starch is the most widespread and abundant storage carbohydrate in crops and its production is critical to both crop yield and quality. In regard to the starch content in the seeds of crop plants, there is a distinct difference between grasses (Poaceae) and dicots. However, few studies have described the evolutionary pattern of genes in the starch biosynthetic pathway in these two groups of plants. In this study, therefore, an attempt was made to compare evolutionary rate, gene duplication, and selective pattern of the key genes involved in this pathway between the two groups, using five grasses and five dicots as materials. The results showed 1) distinct differences in patterns of gene duplication and loss between grasses and dicots; duplication in grasses mainly occurred before the divergence of grasses, whereas duplication mostly occurred in individual species within the dicots; there is less gene loss in grasses than in dicots, 2) a considerably higher evolutionary rate in grasses than in dicots in most gene families analyzed, and 3) evidence of a different selective pattern between grasses and dicots; positive selection may have occurred asymmetrically in grasses in some gene families, for example, ADP-glucose pyrophosphorylase small subunit. Therefore, we deduced that gene duplication contributes to, and a higher evolutionary rate is associated with, the higher starch content in grasses. In addition, two novel aspects of the evolution of the starch biosynthetic pathway were observed.


Asunto(s)
Vías Biosintéticas/genética , Evolución Molecular , Genes de Plantas/genética , Magnoliopsida/genética , Poaceae/genética , Almidón/biosíntesis , Secuencia de Bases , Recolección de Datos , Duplicación de Gen/genética , Glucosa-1-Fosfato Adenililtransferasa/genética , Funciones de Verosimilitud , Magnoliopsida/enzimología , Modelos Genéticos , Familia de Multigenes/genética , Filogenia , Poaceae/enzimología , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA