Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Anal Chem ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034533

RESUMEN

Dabrafenib (DBF), an anticancer drug, exhibits isostructural properties in its hydrate (DBF⊃H2O) and perhydrate (DBF⊃H2O2) forms, as revealed by single-crystal X-ray diffraction. Despite the H2O and H2O2 solvent molecules occupying identical locations, the two polymorphs have different thermal behaviors. In general, determination of stoichiometry of H2O in the perhydrate crystals is difficult due to the presence of both H2O and H2O2 in the same crystal voids. This study utilizes magic-angle spinning (MAS) solid-state NMR (SSNMR) combined with gauge-included projector augmented wave calculations to characterize the influence of solvent molecules on the local environment in pseudopolymorphs. SSNMR experiments were employed to assign 1H, 13C, and 15N peaks and identify spectral differences in the isostructural pseudopolymorphs. Proton spectroscopy at fast MAS was used to identify and quantify H2O2/H2O in DBF⊃H2O2 (mixed hydrate/perhydrate). 1H-1H dipolar-coupling-based experiments were recruited to confirm the 3D molecular packing of solvent molecules in DBF⊃H2O and DBF⊃H2O2. Homonuclear (1H-1H) and heteronuclear (1H-14N) distance measurements, in conjunction with diffraction structures and optimized hydrogen atom positions by density functional theory, helped decipher local interactions of H2O2 with DBF and their geometry in DBF⊃H2O2. This integrated X-ray structure, quantum chemical calculations, and NMR study of pseudopolymorphs offer a practical approach to scrutinizing crystallized solvent interactions in the crystal lattice even without high-resolution crystal structures or artificial sample enrichment.

2.
J Am Chem Soc ; 144(35): 16052-16059, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35998367

RESUMEN

Covalent organic nanotubes (CONTs) are one-dimensional porous frameworks constructed from organic building blocks via dynamic covalent chemistry. CONTs are synthesized as insoluble powder that restricts their potential applications. The judicious selection of 2,2'-bipyridine-5,5'-dicarbaldehyde and tetraaminotriptycene as building blocks for TAT-BPy CONTs has led to constructing flexible yet robust and self-standing fabric up to 3 µm thickness. The TAT-BPy CONTs and TAT-BPy CONT fabric have been characterized by solid-state one-dimensional (1D) 13C CP-MAS, two-dimensional (2D) 13C-1H correlation NMR, 2D 1H-1H DQ-SQ NMR, and 2D 14N-1H correlation NMR spectroscopy. The mechanism of fabric formation has been established by using high-resolution transmission electron microscopy and scanning electron microscopy techniques. The as-synthesized viscoelastic TAT-BPy CONT fabric exhibits high mechanical strength with a reduced modulus (Er) of 8 (±3) GPa and hardness (H) of 0.6 (±0.3) GPa. Interestingly, the viscoelastic fabric shows time-dependent elastic depth recovery up to 50-70%.

3.
Phys Chem Chem Phys ; 24(18): 10717-10726, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35315474

RESUMEN

Detecting proton and nitrogen correlations in solid-state nuclear magnetic resonance (NMR) is important for the structural determination of biological and chemical systems. Recent advances in proton detection-based approaches under fast magic-angle spinning have facilitated the detection of 1H-14N correlations by solid-state NMR. However, observing remote 1H-14N correlations by these approaches is still a challenge, especially for 14N sites having large quadrupolar couplings. To address this issue, we introduce the 1H-14N overtone continuous wave rotational-echo saturation-pulse double-resonance (1H-14N OT CW-RESPDOR) sequence. Unlike regular 2D correlation experiments where the indirect dimension is recorded in the time domain, the 1H-14N OT CW-RESPDOR experiment is directly observed in the frequency domain. A set of 1H-14N OT CW-RESPDOR filtered 1H spectra is recorded at varying 14N OT frequencies. Thanks to the selective nature of the 14N OT pulse, the filtered 1H spectra appear only if the 14N OT frequency hits the positions of the 14N OT central band or one of the spinning sidebands. This set of filtered 1H spectra represents a 2D 1H-14N OT correlation map. We have also investigated the optimizable parameters for CW-RESPDOR and figured out that these parameters are not strictly needed for our working magnetic field of 14.1 T. Hence, the experiment is easy to set up and requires almost no optimization. We have demonstrated the experimental feasibility of 1H-14N OT CW-RESPDOR on monoclinic L-histidine and L-alanyl L-alanine. The remote 1H-14N correlations have been efficiently detected, no matter how large the 14N quadrupolar interaction is, and agree with the crystal structures. In addition, based on the remote 1H-14N correlations from the non-protonated 14N site of L-histidine, we can unambiguously distinguish the orthorhombic and monoclinic forms.


Asunto(s)
Histidina , Protones , Histidina/química , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Nitrógeno
4.
Solid State Nucl Magn Reson ; 117: 101774, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35051807

RESUMEN

Fast magic-angle spinning (≥60 â€‹kHz) technique has enabled the acquisition of high-resolution 1H NMR spectra of solid materials. However, the spectral interpretation is still difficult because the 1H peaks are overlapped due to the narrow chemical shift range and broad linewidths. An additional 13C or 14N or 1H dimension possibly addresses the issues of overlapped proton resonances, but it leads to the elongated experimental time. Herein, we introduce a single-channel 1H experiment to separate the overlapped 1H peak and identify its spatially proximal 1H-1H correlations. This sequence combines selective excitation, selective 1H-1H polarization transfer by selective recoupling of protons (SERP), and broadband 1H recoupling by back-to-back (BABA) recoupling sequences. The concept for 1H separation is based on (i) the selective excitation of a well-resolved 1H peak and (ii) the selective dipolar polarization transfer from this isolated 1H peak to one of the 1H peaks in the overlapped/poor resolution region by SERP and (iii) the detection of 1H-1H correlations from these two 1H peaks to other neighboring 1Hs by BABA. We demonstrated the applicability of this approach to identify overlapped peaks on two molecules, ß-L-aspartyl-l-alanine and Pioglitazone.HCl. The sequence allows the clear observation of 1H-1H correlations from an overlapped 1H peak without an additional heteronuclear dimension and ensures efficient polarization transfers that leads to twelve fold reduction in experimental time compared to 14N edited experiments. The limitation and the conditions of applicability for this approach are discussed in detail.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Espectroscopía de Resonancia Magnética/métodos
5.
Magn Reson Chem ; 59(9-10): 991-1008, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33624858

RESUMEN

Detecting proximities between nuclei is crucial for atomic-scale structure determination with nuclear magnetic resonance (NMR) spectroscopy. Different from spin-1/2 nuclei, the methodology for quadrupolar nuclei is limited for solids due to the complex spin dynamics under simultaneous magic-angle spinning (MAS) and radio-frequency irradiation. Herein, the performances of several homonuclear rotary recoupling (HORROR)-based homonuclear dipolar recoupling sequences are evaluated for 27 Al (spin-5/2). It is shown numerically and experimentally on mesoporous alumina that BR 2 2 1 outperforms the supercycled S3 sequence and its pure double-quantum (DQ) (bracketed) version, [S3 ], both in terms of DQ transfer efficiency and bandwidth. This result is surprising since the S3 sequence is among the best low-power recoupling schemes for spin-1/2. The superiority of BR 2 2 1 is thoroughly explained, and the crucial role of radio-frequency offsets during its spin dynamics is highlighted. The analytical approximation of BR 2 2 1 , derived in an offset-toggling frame, clarifies the interplay between offset and DQ efficiency, namely, the benefits of off-resonance irradiation and the trough in DQ efficiency for BR 2 2 1 when the irradiation is central between two resonances, both for spin-1/2 and half-integer-spin quadrupolar nuclei. Additionally, density matrix propagations show that the BR 2 2 1 sequence, applied to quadrupolar nuclei subject to quadrupolar interaction much larger than radio-frequency frequency field, can create single- and multiple-quantum coherences for near on-resonance irradiation. This significantly perturbs the creation of DQ coherences between central transitions of neighboring quadrupolar nuclei. This effect explains the DQ efficiency trough for near on-resonance irradiation, in the case of both cross-correlation and autocorrelation peaks. Overall, this work aids experimental acquisition of homonuclear dipolar correlation spectra of half-integer-spin quadrupolar nuclei and provides theoretical insights towards improving recoupling schemes at high magnetic field and fast MAS.

6.
Molecules ; 26(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361806

RESUMEN

Three-dimensional electron diffraction crystallography (microED) can solve structures of sub-micrometer crystals, which are too small for single crystal X-ray crystallography. However, R factors for the microED-based structures are generally high because of dynamic scattering. That means R factor may not be reliable provided that kinetic analysis is used. Consequently, there remains ambiguity to locate hydrogens and to assign nuclei with close atomic numbers, like carbon, nitrogen, and oxygen. Herein, we employed microED and ssNMR dipolar-based experiments together with spin dynamics numerical simulations. The NMR dipolar-based experiments were 1H-14N phase-modulated rotational-echo saturation-pulse double-resonance (PM-S-RESPDOR) and 1H-1H selective recoupling of proton (SERP) experiments. The former examined the dephasing effect of a specific 1H resonance under multiple 1H-14N dipolar couplings. The latter examined the selective polarization transfer between a 1H-1H pair. The structure was solved by microED and then validated by evaluating the agreement between experimental and calculated dipolar-based NMR results. As the measurements were performed on 1H and 14N, the method can be employed for natural abundance samples. Furthermore, the whole validation procedure was conducted at 293 K unlike widely used chemical shift calculation at 0 K using the GIPAW method. This combined method was demonstrated on monoclinic l-histidine.

7.
Angew Chem Int Ed Engl ; 60(5): 2578-2582, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33205884

RESUMEN

The bicyclo[1.1.1]pentane (BCP) scaffold is useful in medicinal chemistry, and many protocols are available for synthesizing BCP derivatives from [1.1.1]propellane. Here, we report (1) the α-cyclodextrin (α-CD) encapsulation of BCP derivatives, affording a stable, readily storable material from which BCPs can be easily and quantitatively recovered and (2) new and simple protocols for deiodination reaction of 1,3-diiodo BCP to afford [1.1.1]propellane in protic/aprotic/polar/non-polar solvents. The combination of these methodologies enables simple, on-demand preparation of [1.1.1]propellane in various solvents under mild conditions from α-CD capsules containing 1,3-diiodo BCP.

8.
J Chem Phys ; 153(8): 084202, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872876

RESUMEN

Selective recoupling of protons (SERP) is a method to selectively and quantitatively measure magnetic dipole-dipole interaction between protons and, in turn, the proton-proton distance in solid-state samples at fast magic-angle spinning. We present a bimodal operator-based Floquet approach to describe the numerically optimized SERP recoupling sequence. The description calculates the allowed terms in the first-order effective Hamiltonian, explains the origin of selectivity during recoupling, and shows how different terms are modulated as a function of the radio frequency amplitude and the phase of the sequence. Analytical and numerical simulations have been used to evaluate the effect of higher-order terms and offsets on the polarization transfer efficiency and quantitative distance measurement. The experimentally measured 1H-1H distances on a fully protonated thymol sample are ∼10%-15% shorter than those reported from diffraction studies. A semi-quantitative model combined with extensive numerical simulations is used to rationalize the effect of the third-spin and the role of different parameters in the experimentally observed shorter distances. Measurements at high magnetic fields improve the match between experimental and diffraction distances. The measurement of 1H-1H couplings at offsets different from the SERP-offset has also been explored. Experiments were also performed on a perdeuterated ubiquitin sample to demonstrate the feasibility of simultaneously measuring multiple quantitative distances and to evaluate the accuracy of the measured distance in the absence of multispin effects. The estimation of proton-proton distances provides a boost to structural characterization of small pharmaceuticals and biomolecules, given that the positions of protons are generally not well defined in x-ray structures.

9.
Inorg Chem ; 58(9): 6114-6122, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30986049

RESUMEN

The phase purity of a series of ZnAl4(OH)12SO4· nH2O layered double hydroxides (ZnAl4-LDH) obtained from a reaction of bayerite (Al(OH)3) with an excess of zinc(II) sulfate under hydrothermal conditions was investigated as a function of the reaction temperature, the duration of the hydrothermal treatment, and the zinc(II) concentration. The product quality, i.e., crystalline impurities, Al impurities, and bulk Zn:Al ratio, were assessed by powder X-ray diffraction (PXRD), 27Al MAS NMR, and elemental analysis. Structural characterization of a stoichiometric ZnAl4-LDH (120 °C, 9 days, and 2.8 M Zn(II)) showed a well-defined structure of the metal ion layer as evidenced by a single, well-defined Zn environment: i.e., no Zn substitution on the Al sites according to Zn k-edge EXAFS and PXRD. Furthermore, nearly all of the 12 different 1H atoms in the -OH groups and 4 27Al resonances could be assigned using 1H,27Al NMR correlation experiments recorded with ultrafast MAS. The interlayer water content is variable on the basis of thermogravimetric analysis and changes in the 1H MAS NMR spectra with temperature. A composition of ZnAl4(OH)12(SO4)·2.6H2O was obtained from a combination of these techniques and confirmed that ZnAl4-LDH is isostructural with the mineral nickelalumite (NiAl4(OH)12SO4·3H2O).

10.
Solid State Nucl Magn Reson ; 100: 52-62, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30959243

RESUMEN

We demonstrate the possibility to use UDEFT (Uniform Driven Equilibrium Fourier Transform) technique in order to improve the sensitivity and the quantification of one-dimensional 29Si NMR experiments under magic-angle spinning (MAS). We derive an analytical expression of the signal-to-noise ratios of UDEFT and single-pulse (SP) experiments subsuming the contributions of transient and steady-state regimes. Using numerical spin dynamics simulations and experiments on 29Si-enriched amorphous silica and borosilicate glass, we show that 59180298059180 refocusing composite π-pulse and the adiabatic inversion using tanh/tan modulation improve the robustness of UDEFT technique to rf-inhomogeneity, offset, and chemical shift anisotropy. These pulses combined with a two-step phase cycle limit the pulse imperfections and the artifacts produced by stimulated echoes. The sensitivity of SP, UDEFT and CPMG (Carr-Purcell-Meiboom-Gill) techniques are experimentally compared on functionalized and non-functionalized mesoporous silica. Furthermore, experiments on a flame retardant material prove that UDEFT technique provides a better quantification of 29Si sites with higher sensitivity than SP method.

11.
Magn Reson Chem ; 57(6): 294-303, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30684385

RESUMEN

Chemical shift anisotropy (CSA) is a sensitive probe of electronic environment at a nucleus, and thus, it offers deeper insights into detailed structural and dynamic properties of different systems, for example, chemical, biological, and materials. Over the years, massive efforts have been made to develop recoupling methods that reintroduce CSA interaction under magic angle spinning (MAS) conditions. Most of them require slow or moderate MAS (≤20 kHz) and isotopically enriched samples. On the other hand, to the best of the authors' knowledge, no 13 C or 15 N CSA recoupling schemes at ultrafast MAS (≥60 kHz) suitable for cost-effective natural abundant samples have been developed. We present here a proton-detected 3D 15 N CS/15 N CSA/1 H CS correlation experiment which employs 1 H indirect detection for sensitivity enhancement and a γ-encoded RNnν -symmetry-based CSA recoupling scheme. In particular, two different symmetries, that is, R837 and R1049 , are first tested, in a 2D 15 N CSA/1 H CS version, on [U-15 N]-L-histidine·HCl·H2 O as a model sample under 70 kHz MAS. Then the 3D experiment is applied on glycyl-L-alanine at natural abundance, resulting in site-resolved 15 N CSA lineshapes from which CSA parameters are retrieved by SIMPSON numerical fittings. We demonstrate that this 3D R-symmetry-based pulse sequence is highly robust with respect to wide-range offset mismatches and weakly dependent to rf inhomogeneity within mis-sets of ±10% from the theoretical value.

12.
J Am Chem Soc ; 140(7): 2602-2609, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29376387

RESUMEN

Covalent organic frameworks (COFs) represent an emerging class of crystalline porous materials that are constructed by the assembly of organic building blocks linked via covalent bonds. Several strategies have been developed for the construction of new COF structures; however, a facile approach to fabricate hierarchical COF architectures with controlled domain structures remains a significant challenge, and has not yet been achieved. In this study, a dynamic covalent chemistry (DCC)-based postsynthetic approach was employed at the solid-liquid interface to construct such structures. Two-dimensional imine-bonded COFs having different aromatic groups were prepared, and a homogeneously mixed-linker structure and a heterogeneously core-shell hollow structure were fabricated by controlling the reactivity of the postsynthetic reactions. Solid-state nuclear magnetic resonance (NMR) spectroscopy and transmission electron microscopy (TEM) confirmed the structures. COFs prepared by a postsynthetic approach exhibit several functional advantages compared with their parent phases. Their Brunauer-Emmett-Teller (BET) surface areas are 2-fold greater than those of their parent phases because of the higher crystallinity. In addition, the hydrophilicity of the material and the stepwise adsorption isotherms of H2O vapor in the hierarchical frameworks were precisely controlled, which was feasible because of the distribution of various domains of the two COFs by controlling the postsynthetic reaction. The approach opens new routes for constructing COF architectures with functionalities that are not possible in a single phase.

13.
Phys Chem Chem Phys ; 20(40): 25829-25840, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30285019

RESUMEN

The combination of cross-polarization (CP) with flip-back (FB) pulse has enabled in NMR the enhancement of 13C sensitivity and the decrease of the recycling delay at both moderate and fast magic-angle spinning (MAS) frequencies. However, only continuous-wave (CW) decoupling is presently compatible with FB-pulse (FB-CW), and depending on the CW radio-frequency (rf) field, either an insignificant sensitivity gain or an acquisition time-dependent gain and a low 13C resolution are obtained. In this study, we propose a new FB-pulse method in which radio frequency-driven recoupling (RFDR) is used as the 1H-13C decoupling scheme to overcome these drawbacks. The performances of FB-RFDR in terms of decoupling efficiency and sensitivity gain are tested on both natural abundance (NA) and uniformly 13C-15N labeled l-histidine·HCl·H2O (Hist) samples at a MAS frequency of νR = 70 kHz. The results show the superiority of RFDR over the CW decoupling with respect to these criteria. Importantly, they reveal that the sensitivity gain offered by FB-RFDR is nearly independent of the decoupling/acquisition duration. The application of FB-RFDR on NA-Hist and sucrose yields a sensitivity gain between 60 and 100% compared to conventional FB-CW and CPMAS-SPINAL experiments. Moreover, we compare the 13C sensitivities of NA-Hist obtained by our 1D FB-RFDR method and 2D 1H-{13C} double-CP acquisition. Both methods provide similar 13C sensitivity and are complementary. Indeed, the 2D method has the advantage of also providing the 1H-13C spatial proximities, but its sensitivity for quaternary carbons is limited; whereas our 1D FB-RFDR method is more independent of the type of carbon, and can provide a 13C 1D spectrum in a shorter experimental time. We also test the feasibility of FB-RFDR at a moderate frequency of νR = 20 kHz, but the experimental results demonstrate a poor resolution as well as a negligible sensitivity gain.

14.
Artículo en Inglés | MEDLINE | ID: mdl-28089491

RESUMEN

Recent study has demonstrated the application of the proton-detected heteronuclear multi-quantum coherence (HMQC) at ultrafast Magic Angle Spinning (MAS) to probe quadrupolar nuclei including 14N and 35Cl. In addition, for half-integer quadrupolar nucleus like 35Cl, the quadrupolar product can be calculated based on the shift difference between the center band of satellite transition (ST) and the central transition (CT) peaks. The applicability of this technique is further investigated on spin I=5/2, namely 27Al nucleus, and kaolin is chosen as the testing sample. However this study is not straightforward owing to a spin quantum number I=5/2 of 27Al nucleus and a small quadrupolar coupling of kaolin. Furthermore, very fast MAS, which is mandatory for proton-detected experiment to suppress 1H-1H homonuclear dipolar interactions, introduces additional complexities. It induces the partial overlap of CT and the center band of inner ST (ST1) resonance in addition to the insufficiency of CT-selective excitation by soft-pulse irradiation. In the current work, we employ the constant-time D-HMQC experiment, in which the duration between two recoupling blocks is fixed to a constant value and the arbitrary t1 increment can be used within this duration. This constant-time D-HMQC enables the precise determination of CT and ST resonance shifts through CT- and ST-selective observations by the indirect spectral width (i) with asynchronized sampling to the top of rotational-echoes for STs and (ii) three times larger than the spinning frequency, respectively. We also numerically and experimentally develop a satellite-selective excitation technique, in which the radio frequency field is applied to the first spinning sideband of ST1 resonance. The satellite-selective 1D single pulse and 2D conventional D-HMQC experiments are demonstrated. The quadrupolar product of 27Al nucleus extracted from the resulting spectra is in good agreement with the literature.

15.
Molecules ; 22(8)2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28771206

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique and has been widely used in metabolomics. However, the intrinsic low sensitivity of NMR prevents its applications to systems with limited sample availabilities. In this study, a new experimental approach is presented to analyze mass-scarce samples in limited volumes of less than 300 nL with simple handling. The sample is loaded into the glass capillary, and this capillary is then inserted into a Kel-F rotor. The experimental performance of the capillary-inserted rotor (capillary-insert) is investigated on an isotropic solution of sucrose by the use of a high-resolution micro-sized magic angle spinning (HRµMAS) probe. The acquired NMR signal's sensitivity to a given sample amount is comparable or even higher in comparison to that recorded by the standard solution NMR probe. More importantly, this capillary-insert coupled with the HRµMAS probe allows in-depth studies of heterogeneous samples as the MAS removes the line broadening caused by the heterogeneity. The NMR analyses of mass-limited cultured neurospheres have been demonstrated, resulting in high quality spectra where numerous metabolites are unambiguously identified.


Asunto(s)
Espectroscopía de Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/instrumentación , Metabolómica/métodos
16.
J Am Chem Soc ; 136(39): 13781-8, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25153717

RESUMEN

Silica (SiO2) nanoparticles (NPs) were functionalized by silanization to produce a surface covered with organosiloxanes. Information about the surface coverage and the nature, if any, of organosiloxane polymerization, whether parallel or perpendicular to the surface, is highly desired. To this extent, two-dimensional homonuclear (29)Si solid-state NMR could be employed. However, owing to the sensitivity limitations associated with the low natural abundance (4.7%) of (29)Si and the difficulty and expense of isotopic labeling here, this technique would usually be deemed impracticable. Nevertheless, we show that recent developments in the field of dynamic nuclear polarization under magic angle spinning (MAS-DNP) could be used to dramatically increase the sensitivity of the NMR experiments, resulting in a timesaving factor of ∼625 compared to conventional solid-state NMR. This allowed the acquisition of previously infeasible data. Using both through-space and through-bond 2D (29)Si-(29)Si correlation experiments, it is shown that the required reaction conditions favor lateral polymerization and domain growth. Moreover, the natural abundance correlation experiments permitted the estimation of (2)J(Si-O-Si)-couplings (13.8 ± 1.4 Hz for surface silica) and interatomic distances (3.04 ± 0.08 Å for surface silica) since complications associated with many-spin systems and also sensitivity were avoided. The work detailed herein not only demonstrates the possibility of using MAS-DNP to greatly facilitate the acquisition of 2D (29)Si-(29)Si correlation spectra but also shows that this technique can be used in a routine fashion to characterize surface grafting networks and gain structural constraints, which can be related to a system's chemical and physical properties.

17.
J Magn Reson ; 358: 107614, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141495

RESUMEN

Radio-frequency (RF) field calibration is essential in NMR spectroscopy. A common practice is to collect a nutation curve by varying the pulse length in a direct single-pulse excitation experiment or in a cross-polarization magic-angle spinning with a flip-back pulse experiment. From the null points on this curve, one can calculate the RF field strength. Nevertheless, the practical implementation is not always straightforward or can even be unrealizable, especially for low-receptivity nuclei owing to their associated low sensitivity. Several researchers used an approach that involves utilizing other nuclei with more sensitivity but nearly identical Larmor frequencies to that of the nucleus of interest. However, such an approach has not been a common practice so far. In this work, we have systematically revisited this approach using 3.2 mm rotors on different sets of nuclei covering a Larmor frequency range up to 80 MHz. The effect of solid- and solution-states on RF field strength measurements has been investigated. The detection of each set of nuclei is then carried out with a resonant circuit in the NMR probe consisting of identical coils and capacitors. Our methodology is illustrated by recording 135/137Ba NMR spectra of BaTiO3 without prior 135/137Ba RF field calibration.

18.
Adv Mater ; 36(12): e2209919, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36635878

RESUMEN

The development of synthetic routes for the formation of robust porous organic polymers (POPs) with well-defined nanoscale morphology is fundamentally significant for their practical applications. The thermodynamic characteristics that arise from reversible covalent bonding impart intrinsic chemical instability in the polymers, thereby impeding their overall potential. Herein, a unique strategy is reported to overcome the stability issue by designing robust imidazole-linked POPs via tandem reversible/irreversible bond formation. Incorporating inherent rigidity into the secondary building units leads to robust microporous polymeric nanostructures with hollow-spherical morphologies. An in-depth analysis by extensive solid-state NMR (1D and 2D) study on 1H, 13C, and 14N nuclei elucidates the bonding and reveals the high purity of the newly designed imidazole-based POPs. The nitrogen-rich polymeric nanostructures are further used as metal-free electrocatalysts for water splitting. In particular, the rigid POPs show excellent catalytic activity toward the oxygen evolution reaction (OER) with long-term durability. Among them, the most efficient OER electrocatalyst (TAT-TFBE) requires 314 mV of overpotential to drive 10 mA cm-2 current density, demonstrating its superiority over state-of-the-art catalysts (RuO2 and IrO2).

19.
Front Mol Biosci ; 8: 645347, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898521

RESUMEN

Accurate distance measurements between proton and nitrogen can provide detailed information on the structures and dynamics of various molecules. The combination of broadband phase-modulated (PM) pulse and rotational-echo saturation-pulse double-resonance (RESPDOR) sequence at fast magic-angle spinning (MAS) has enabled the measurement of multiple 1H-14N distances with high accuracy. However, complications may arise when applying this sequence to systems with multiple inequivalent 14N nuclei, especially a single 1H sitting close to multiple 14N atoms. Due to its broadband characteristics, the PM pulse saturates all 14N atoms; hence, the single 1H simultaneously experiences the RESPDOR effect from multiple 1H-14N couplings. Consequently, no reliable H-N distances are obtained. To overcome the problem, selective 14N saturation is desired, but it is difficult because 14N is an integer quadrupolar nucleus. Alternatively, 14N overtone (OT) NMR spectroscopy can be employed owing to its narrow bandwidth for selectivity. Moreover, owing to the sole presence of two energy levels (m = ± 1), the 14N OT spin dynamics behaves similarly to that of spin-1/2. This allows the interchangeability between RESPDOR and rotational-echo double-resonance (REDOR) since their principles are the same except the degree of 14N OT population transfer; saturation for the former whereas inversion for the latter. As the ideal saturation/inversion is impractical due to the slow and orientation-dependent effective nutation of 14N OT, the working condition is usually an intermediate between REDOR and RESPDOR. The degree of 14N OT population transfer can be determined from the results of protons with short distances to 14N and then can be used to obtain long-distance determination of other protons to the same 14N site. Herein, we combine the 14N OT and REDOR/RESPDOR to explore the feasibility of selective 1H-14N distance measurements. Experimental demonstrations on simple biological compounds of L-tyrosine.HCl, N-acetyl-L-alanine, and L-alanyl-L-alanine were performed at 14.1 T and MAS frequency of 62.5 kHz. The former two consist of a single 14N site, whereas the latter consists of two 14N sites. The experimental optimizations and reliable fittings by the universal curves are described. The extracted 1H-14N distances by OT-REDOR are in good agreement with those determined by PM-RESPDOR and diffraction techniques.

20.
J Magn Reson ; 328: 107004, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34049237

RESUMEN

Proton-detected solid-state NMR at fast Magic Angle Spinning (MAS) is becoming the norm to characterize molecules. Routinely 1H-1H and 1H-X dipolar couplings are used to characterize the structure and dynamics of molecules. Selective proton recoupling techniques are emerging as a method for structural characterization via estimation of qualitative and quantitative distances. In the present study, we demonstrate through numerical simulations and experiments that the well-characterized CNvn sequences can also be tailored for selective recoupling of proton spins by employing C elements of the type (ß)Φ(4ß)Φ+π(3ß)Φ. Herein, several CNvn sequences were examined through numerical simulations and experiments. C614 recoupling sequence with a modified POST-element ((ß)Φ(4ß)Φ+π(3ß)Φ) shows selective polarization transfer efficiencies on the order of 40-50% between various proton spin pairs in fully protonated samples at rf amplitudes ranging from 0.3 to 0.8 times the MAS frequency. These selective recoupling sequences have been labeled as frequency-selective-CNvn sequences. The extent of selectivity, polarization transfer efficiency and the feasibility of experimentally measuring proton-proton distances in fully protonated samples are explored here. The development of efficient and robust selective 1H-1H recoupling experiments is required to structurally characterize molecules without artificial isotope enrichment or the need for diffracting crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA