Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mucosal Immunol ; 15(4): 629-641, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35501356

RESUMEN

The nervous system and the immune system both rely on an extensive set of modalities to perceive and act on perturbations in the internal and external environments. During feeding, the intestine is exposed to nutrients that may contain noxious substances and pathogens. Here we show that Vasoactive Intestinal Peptide (VIP), produced by the nervous system in response to feeding, potentiates the production of effector cytokines by intestinal type 2 and type 3 innate lymphoid cells (ILC2s and ILC3s). Exposure to VIP alone leads to modest activation of ILCs, but strongly potentiates ILCs to concomitant or subsequent activation by the inducer cytokines IL-33 or IL-23, via mobilization of cAMP and energy by glycolysis. Consequently, VIP increases resistance to intestinal infection by the helminth Trichuris muris and the enterobacteria Citrobacter rodentium. These findings uncover a functional neuro-immune crosstalk unfolding during feeding that increases the reactivity of innate immunity necessary to face potential threats associated with food intake.


Asunto(s)
Neuropéptidos , Péptido Intestinal Vasoactivo , Citocinas/metabolismo , Inmunidad Innata , Intestinos , Linfocitos , Neuropéptidos/metabolismo
2.
Front Microbiol ; 12: 666097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675890

RESUMEN

ExoY is among the effectors that are injected by the type III secretion system (T3SS) of Pseudomonas aeruginosa into host cells. Inside eukaryotic cells, ExoY interacts with F-actin, which stimulates its potent nucleotidyl cyclase activity to produce cyclic nucleotide monophosphates (cNMPs). ExoY has broad substrate specificity with GTP as a preferential substrate in vitro. How ExoY contributes to the virulence of P. aeruginosa remains largely unknown. Here, we examined the prevalence of active ExoY among strains from the international P. aeruginosa reference panel, a collection of strains that includes environmental and clinical isolates, commonly used laboratory strains, and sequential clonal isolates from cystic fibrosis (CF) patients and thus represents the large diversity of this bacterial species. The ability to secrete active ExoY was determined by measuring the F-actin stimulated guanylate cyclase (GC) activity in bacterial culture supernatants. We found an overall ExoY activity prevalence of about 60% among the 40 examined strains with no significant difference between CF and non-CF isolates. In parallel, we used cellular infection models of human lung epithelial cells to compare the cytotoxic effects of isogenic reference strains expressing active ExoY or lacking the exoY gene. We found that P. aeruginosa strains lacking ExoY were in fact more cytotoxic to the epithelial cells than those secreting active ExoY. This suggests that under certain conditions, ExoY might partly alleviate the cytotoxic effects of other virulence factors of P. aeruginosa.

3.
Front Pharmacol ; 11: 246, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256353

RESUMEN

Plasmodium falciparum parasites are increasingly drug-resistant, requiring the search for novel antimalarials with distinct modes of action. Enzymes in the glutathione pathway, including glutathione S-transferase (GST), show promise as novel antimalarial targets. This study aims to better understand the biological function of Plasmodium GST, assess its potential as a drug target, and identify novel antiplasmodial compounds using the rodent model P. berghei. By using reverse genetics, we provided evidence that GST is essential for survival of P. berghei intra-erythrocytic stages and is a valid target for drug development. A structural model of the P. berghei glutathione S-transferase (PbGST) protein was generated and used in a structure-based screening of 900,000 compounds from the ChemBridge Hit2Lead library. Forty compounds were identified as potential inhibitors and analyzed in parasite in vitro drug susceptibility assays. One compound, CB-27, exhibited antiplasmodial activity with an EC50 of 0.5 µM toward P. berghei and 0.9 µM toward P. falciparum multidrug-resistant Dd2 clone B2 parasites. Moreover, CB-27 showed a concentration-dependent inhibition of the PbGST enzyme without inhibiting the human ortholog. A shape similarity screening using CB-27 as query resulted in the identification of 24 novel chemical scaffolds, with six of them showing antiplasmodial activity ranging from EC50 of 0.6-4.9 µM. Pharmacokinetic and toxicity predictions suggest that the lead compounds have drug-likeness properties. The antiplasmodial potency, the absence of hemolytic activity, and the predicted drug-likeness properties position these compounds for lead optimization and further development as antimalarials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA