Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Chembiochem ; 25(9): e202400138, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38478375

RESUMEN

A porphyrin-BODIPY dyad (P-BDP) was obtained through covalent bonding, featuring a two-segment design comprising a light-harvesting antenna system connected to an energy acceptor unit. The absorption spectrum of P-BDP resulted from an overlap of the individual spectra of its constituent parts, with the fluorescence emission of the BODIPY unit experiencing significant quenching (96 %) due to the presence of the porphyrin unit. Spectroscopic, computational, and redox investigations revealed a competition between photoinduced energy and electron transfer processes. The dyad demonstrated the capability to sensitize both singlet molecular oxygen and superoxide radical anions. Additionally, P-BDP effectively induced the photooxidation of L-tryptophan. In suspensions of Staphylococcus aureus cells, the dyad led to a reduction of over 3.5 log (99.99 %) in cell survival following 30 min of irradiation with green light. Photodynamic inactivation caused by P-BDP was also extended to the individual bacterium level, focusing on bacterial cells adhered to a surface. This dyad successfully achieved the total elimination of the bacteria upon 20 min of irradiation. Therefore, P-BDP presents an interesting photosensitizing structure that takes advantage of the light-harvesting antenna properties of the BODIPY unit combined with porphyrin, offering potential to enhance photoinactivation of bacteria.


Asunto(s)
Compuestos de Boro , Fármacos Fotosensibilizantes , Porfirinas , Staphylococcus aureus , Compuestos de Boro/química , Compuestos de Boro/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Staphylococcus aureus/efectos de los fármacos , Porfirinas/química , Porfirinas/farmacología , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Luz , Estructura Molecular
2.
Langmuir ; 39(31): 11134-11144, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37497839

RESUMEN

Although silica surfaces have been used in organic oxidations for the production of peroxides, studies of airborne singlet oxygen at interfaces are limited and have not found widespread advantages. Here, with prenyl phenol-coated silica and delivery of singlet oxygen (1O2) through the gas phase, we uncover significant selectivity for dihydrofuran formation over allylic hydroperoxide formation. The hydrophobic particle causes prenyl phenol to produce an iso-hydroperoxide intermediate with an internally protonated oxygen atom, which leads to dihydrofuran formation as well as O atom transfer. In contrast, hydrophilic particles cause prenyl phenol to produce allylic hydroperoxide, due to phenol OH hydrogen bonding with SiOH surface groups. Mechanistic insight is provided by air/nanoparticle interfaces coated with the prenyl phenol, in which product yield was 6-fold greater on the hydrophobic nanoparticles compared to the hydrophilic nanoparticles and total rate constants (ASI-kT) of 1O2 were 13-fold greater on the hydrophobic vs hydrophilic nanoparticles. A slope intersection method was also developed that uses the airborne 1O2 lifetime (τairborne) and surface-associated 1O2 lifetime (τsurf) to quantitate 1O2 transitioning from volatile to non-volatile and surface boundary (surface···1O2). Further mechanistic insights on the selectivity of the reaction of prenyl phenol with 1O2 was provided by density functional theory calculations.

3.
Langmuir ; 39(1): 442-452, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36576408

RESUMEN

The physical properties of lipid membranes depend on their lipid composition. Photosensitized singlet oxygen (1O2) provides a handle to spatiotemporally control the generation of lipid hydroperoxides via the ene reaction, enabling fundamental studies on membrane dynamics in response to chemical composition changes. Critical to relating the physical properties of the lipid membrane to hydroperoxide formation is the availability of a sensitive reporter to quantify the arrival of 1O2. Here, we show that a fluorogenic α-tocopherol analogue, H4BPMHC, undergoes a >360-fold emission intensity enhancement in liposomes following a reaction with 1O2. Rapid quenching of 1O2 by the probe (kq = 4.9 × 108 M-1 s-1) ensures zero-order kinetics of probe consumption. The remarkable intensity enhancement of H4BPMHC upon 1O2 trapping, its linear temporal behavior, and its protective role in outcompeting membrane damage provide a sensitive and reliable method to quantify the 1O2 flux on lipid membranes. Armed with this probe, fluorescence microscopy studies were devised to enable (i) monitoring the flux of photosensitized 1O2 into giant unilamellar vesicles (GUVs), (ii) establishing the onset of the ene reaction with the double bonds of monounsaturated lipids, and (iii) visualizing the ensuing collective membrane expansion dynamics associated with molecular changes in the lipid structure upon hydroperoxide formation. A correlation was observed between the time for antioxidant H4BPMHC consumption by 1O2 and the onset of membrane fluctuations and surface expansion. Together, our imaging studies with H4BPMHC in GUVs provide a methodology to explore the intimate relationship between photosensitizer activity, chemical insult, membrane morphology, and its collective dynamics.


Asunto(s)
Oxígeno Singlete , Liposomas Unilamelares , Liposomas Unilamelares/química , Peróxido de Hidrógeno , Antioxidantes/química , Lípidos/química
4.
Chemistry ; 28(5): e202103884, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34878698

RESUMEN

A novel BOPHY-fullerene C60 dyad (BP-C60 ) was designed as a heavy-atom-free photosensitizer (PS) with potential uses in photodynamic treatment and reactive oxygen species (ROS)-mediated applications. BP-C60 consists of a BOPHY fluorophore covalently attached to a C60 moiety through a pyrrolidine ring. The BOPHY core works as a visible-light-harvesting antenna, while the fullerene C60 subunit elicits the photodynamic action. This fluorophore-fullerene cycloadduct, obtained by a straightforward synthetic route, was fully characterized and compared with its individual counterparts. The restricted rotation around the single bond connecting the BOPHY and pyrrolidine moieties led to the formation of two atropisomers. Spectroscopic, electrochemical, and computational studies disclose an efficient photoinduced energy/electron transfer process from BOPHY to fullerene C60 . Photodynamic studies indicate that BP-C60 produces ROS by both photomechanisms (type I and type II). Moreover, the dyad exhibits higher ROS production efficiency than its individual constitutional components. Preliminary screening of photodynamic inactivation on bacteria models (Staphylococcus aureus and Escherichia coli) demonstrated the ability of this dyad to be used as a heavy-atom-free PS. To the best of our knowledge, this is the first time that not only a BOPHY-fullerene C60 dyad is reported, but also that a BOPHY derivative is applied to photoinactivate microorganisms. This study lays the foundations for the development of new BOPHY-based PSs with plausible applications in the medical field.


Asunto(s)
Antiinfecciosos , Fulerenos , Fotoquimioterapia , Antiinfecciosos/farmacología , Fármacos Fotosensibilizantes/farmacología , Staphylococcus aureus
5.
Environ Sci Technol ; 55(6): 3559-3567, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33660980

RESUMEN

An interparticle system has been devised, allowing airborne singlet oxygen to transfer between particle surfaces. Singlet oxygen is photogenerated on a sensitizer particle, where it then travels through air to a second particle bearing an oxidizable compound-a particulate-based approach with some similarities to reactive oxygen quenching in the atmosphere. In atmospheric photochemistry, singlet oxygen is generated by natural particulate matter, but its formation and quenching between particles has until now not been determined. Determining how singlet oxygen reacts on a second surface is useful and was developed by a three-phase system (particle-air-particle) interparticulate photoreaction with tunable quenching properties. We identify singlet oxygen quenching directly by near-IR phosphorescence in the airborne state and at the air/particle interface for total quenching rate constants (kT) of adsorbed anthracene trapping agents. The air/solid interface kT of singlet oxygen by anthracene-coated particles was (2.8 ± 0.8) × 107 g mol-1 s-1 for 9,10-dimethylanthracene and (2.1 ± 0.9) × 107 g mol-1 s-1 for 9,10-anthracene dipropionate dianion, and the lifetime of airborne singlet oxygen was measured to be 550 µs. These real-time interactions and particle-induced quenching steps open up new opportunities for singlet oxygen research of atmospheric and particulate processes.


Asunto(s)
Oxígeno , Oxígeno Singlete , Fotoquímica
6.
Chemphyschem ; 20(9): 1110-1125, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30969481

RESUMEN

A covalently linked BODIPY-fullerene C60 dyad (BDP-C60 ) was synthesized as a two-segment structure, which consists of a visible light-harvesting antenna attached to an energy or electron acceptor moiety. This structure was designed to improve the photodynamic action of fullerene C60 to inactivate bacteria. The absorption spectrum of BDP-C60 was found to be a superposition of the spectra of its constitutional moieties, whereas the fluorescence emission of the BODIPY unit was strongly quenched by the fullerene C60 . Spectroscopic, calculations, and redox studies indicate a competence between photoinduced energy and electron transfer. Protonating the dimethylaminophenyl substituent through addition of an acidic medium led to a substantial increase in the fluorescence emission, triplet excited state formation, and singlet molecular oxygen production. At physiological pH, photosensitized inactivation of Staphylococcus aureus mediated by 1 µM BDP-C60 exhibited a 4.5 log decrease of cell survival (>99.997 %) after 15 min irradiation. A similar result was obtained with Escherichia coli using 30 min irradiation. Moreover, proton-activated photodynamic action of BDP-C60 turned this dyad into a highly effective photosensitizer to eradicate E. coli. Therefore, BDP-C60 is an interesting photosensitizing structure in which the light-harvesting antenna effect of the BODIPY unit combined with the protonation of dimethylaminophenyl group can be used to improve the photoinactivation of bacteria.


Asunto(s)
Antiinfecciosos/química , Compuestos de Boro/química , Compuestos de Boro/farmacología , Fulerenos/química , Fulerenos/farmacología , Complejos de Proteína Captadores de Luz/química , Electroquímica , Escherichia coli/efectos de los fármacos , Estructura Molecular , Fotoquimioterapia , Staphylococcus aureus/efectos de los fármacos
7.
J Am Chem Soc ; 140(49): 16882-16887, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30462919

RESUMEN

We report a strategy to synthesize highly emissive, photostable, microporous materials by solid-state entrapment of boron dipyrromethene (BODIPY) fluorophores in a metal-organic framework. Solvent-free mechanochemistry or accelerated aging enabled quantitative capture and dispersal of the PM605 dye within the ZIF-8 framework starting from inexpensive, commercial materials. While the design of emissive BODIPY solids is normally challenged by quenching in a densely packed environment, herein reported PM605@ZIF-8 materials show excellent emissive properties and to the best of our knowledge an unprecedented ∼10-fold enhancement of BODIPY photostability. Time-resolved and steady-state fluorescence studies of PM605@ZIF-8 show that interchromophore interactions are minimal at low dye loadings, but at higher ones lead to through-pore energy transfer between chromophores and to aggregate species.

8.
J Am Chem Soc ; 140(30): 9606-9615, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29989809

RESUMEN

Although the general mechanisms of lipid oxidation are known, the chemical steps through which photosensitizers and light permeabilize lipid membranes are still poorly understood. Herein we characterized the products of lipid photooxidation and their effects on lipid bilayers, also giving insight into their formation pathways. Our experimental system was designed to allow two phenothiazinium-based photosensitizers (methylene blue, MB, and DO15) to deliver the same amount of singlet oxygen molecules per second to 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine liposome membranes, but with a substantial difference in terms of the extent of direct physical contact with lipid double bonds; that is, DO15 has a 27-times higher colocalization with ω-9 lipid double bonds than MB. Under this condition, DO15 permeabilizes membranes at least 1 order of magnitude more efficiently than MB, a result that was also valid for liposomes made of polyunsaturated lipids. Quantification of reaction products uncovered a mixture of phospholipid hydroperoxides, alcohols, ketones, and aldehydes. Although both photosensitizers allowed the formation of hydroperoxides, the oxidized products that require direct reactions between photosensitizer and lipids were more prevalent in liposomes oxidized by DO15. Membrane permeabilization was always connected with the presence of lipid aldehydes, which cause a substantial decrease in the Gibbs free energy barrier for water permeation. Processes depending on direct contact between photosensitizers and lipids were revealed to be essential for the progress of lipid oxidation and consequently for aldehyde formation, providing a molecular-level explanation of why membrane binding correlates so well with the cell-killing efficiency of photosensitizers.

9.
Chemistry ; 24(22): 5950-5961, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29405455

RESUMEN

A novel chlorin derivative (TPCF20 -NMe2 ) has been synthesized as a syn adduct of a pyrrolidine-fused chlorin bearing a C-linked N,N-dimethylaminophenyl residue. The absorption spectrum of TPCF20 -NMe2 is essentially identical to that of TPCF20 in N,N-dimethylformamide, indicating a very weak interaction between the chlorin macrocycle and the amine group in the ground state. However, the fluorescence emission of the chlorin moiety in TPCF20 -NMe2 is effectively quenched by the attached amine unit. Moreover, TPCF20 -NMe2 is unable to attain a triplet excited state or to photosensitize singlet molecular oxygen. Spectroscopic and redox properties indicate that intramolecular photoinduced electron transfer can take place from the N,N-dimethylaminophenyl group to the chlorin macrocycle. Thus, in an acid medium, protonation of the amino group leads to a considerable increase in the fluorescence emission, triplet excited-state formation, and singlet molecular oxygen production. Photodynamic inactivation of Escherichia coli sensitized by TPCF20 -NMe2 is negligible at neutral pH. However, this chlorin becomes highly effective in inactivating E. coli cells under acidic conditions. Therefore, these results indicate that TPCF20 -NMe2 is an interesting molecular structure, in which protonation of the amino group can be used as an off/on molecular switch activating red fluorescence emission and photodynamic activity capable of eradicating bacteria.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Fármacos Fotosensibilizantes/síntesis química , Porfirinas/síntesis química , Dimetilformamida/química , Escherichia coli/efectos de los fármacos , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Estructura Molecular , Fármacos Fotosensibilizantes/química , Porfirinas/química , Protones , Oxígeno Singlete/química
10.
J Am Chem Soc ; 138(50): 16388-16397, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27998090

RESUMEN

We report herein the design, synthesis, and characterization of a two-segment fluorogenic analogue of vitamin K, B-VKQ, prepared by coupling vitamin K3, also known as menadione (a quinone redox center), to a boron-dipyrromethene (BODIPY) fluorophore (a lipophilic reporter segment). Oxidation-reduction reactions, spectroelectrochemical studies, and enzymatic assays conducted in the presence of DT-diaphorase illustrate that the new probe shows reversible redox behavior on par with that of vitamin K, provides a high-sensitivity fluorescence signal, and is compatible with biological conditions, opening the door to monitor remotely (i.e., via imaging) redox processes in real time. In its oxidized form, B-VKQ is non-emissive, while upon reduction to the hydroquinone form, B-VKQH2, BODIPY fluorescence is restored, with emission quantum yield values of ca. 0.54 in toluene. Density functional theory studies validate a photoinduced electron transfer intramolecular switching mechanism, active in the non-emissive quinone form and deactivated upon reduction to the emissive dihydroquinone form. Our results highlight the potential of B-VKQ as a fluorogenic probe to study electron transfer and transport in model systems and biological structures with optimal sensitivity and desirable chemical specificity. Use of such a probe may enable a better understanding of the role that vitamin K plays in biological redox reactions ubiquitous in key cellular processes, and help elucidate the mechanism and pathological significance of these reactions in biological systems.


Asunto(s)
Colorantes Fluorescentes/química , Vitamina K/química , Electroquímica , Transporte de Electrón , Colorantes Fluorescentes/metabolismo , Modelos Moleculares , NAD(P)H Deshidrogenasa (Quinona)/química , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Conformación Proteica , Vitamina K/metabolismo
11.
J Am Chem Soc ; 138(4): 1215-25, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26789198

RESUMEN

Here we show the design, preparation, and characterization of a dormant singlet oxygen ((1)O2) photosensitizer that is activated upon its reaction with reactive oxygen species (ROS), including (1)O2 itself, in what constitutes an autocatalytic process. The compound is based on a two segment photosensitizer-trap molecule where the photosensitizer segment consists of a Br-substituted boron-dipyrromethene (BODIPY) dye. The trap segment consists of the chromanol ring of α-tocopherol, the most potent naturally occurring lipid soluble antioxidant. Time-resolved absorption, fluorescence, and (1)O2 phosphorescence studies together with fluorescence and (1)O2 phosphorescence emission quantum yields collected on Br2B-PMHC and related bromo and iodo-substituted BODIPY dyes show that the trap segment provides a total of three layers of intramolecular suppression of (1)O2 production. Oxidation of the trap segment with ROS restores the sensitizing properties of the photosensitizer segment resulting in ∼40-fold enhancement in (1)O2 production. The juxtaposed antioxidant (chromanol) and prooxidant (Br-BODIPY) antagonistic chemical activities of the two-segment compound enable the autocatalytic, and in general ROS-mediated, activation of (1)O2 sensitization providing a chemical cue for the spatiotemporal control of (1)O2.The usefulness of this approach to selectively photoactivate the production of singlet oxygen in ROS stressed vs regular cells was successfully tested via the photodynamic inactivation of a ROS stressed Gram negative Escherichia coli strain.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/química , Oxígeno Singlete/química , Compuestos de Boro/química
12.
Chemphyschem ; 17(11): 1678-85, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-26891863

RESUMEN

The influence of different glycerol, N,N-dimethylformamide (DMF) and water mixtures encapsulated in 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/n-heptane reverse micelles (RMs) on the enzymatic hydrolysis of 2-naphthyl acetate by α-chymotrypsin is demonstrated. In the case of the mixtures with DMF and protic solvents it has been previously shown, using absorption, emission and dynamic light-scattering techniques, that solvents are segregated inside the polar core of the RMs. Protic solvents anchor to the AOT, whereas DMF locates to the polar core of the aggregate. Thus, DMF not only helps to solubilize the hydrophobic substrate, increasing its effective concentrations but surprisingly, it does not affect the enzyme activity. The importance of ensuring the presence of RMs, encapsulation of the polar solvents and the corrections by substrate partitioning in order to obtain reliable conclusions is highlighted. Moreover, the effect of a constrained environment on solvent-solvent interactions in homogenous media and its impact on the use of RMs as nanoreactors is stressed.


Asunto(s)
Quimotripsina/metabolismo , Dimetilformamida/metabolismo , Glicerol/metabolismo , Succinatos/metabolismo , Agua/metabolismo , Biocatálisis , Quimotripsina/química , Dimetilformamida/química , Glicerol/química , Heptanos/química , Heptanos/metabolismo , Micelas , Solventes/química , Solventes/metabolismo , Succinatos/química , Agua/química
13.
Photochem Photobiol ; 100(2): 455-464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37602967

RESUMEN

A density functional theoretical (DFT) study is presented, implicating a 1 O2 oxidation process to reach a dihydrobenzofuran from the reaction of the natural homoallylic alcohol, glycocitrine. Our results predict an interconversion between glycocitrine and an iso-hydroperoxide intermediate [R(H)O+ -O- ] that provides a key path in the chemistry which then follows. Formations of allylic hydroperoxides are unlikely from a 1 O2 'ene' reaction. Instead, the dihydrobenzofuran arises by 1 O2 oxidation facilitated by a 16° curvature of the glycocitrine ring imposed by a pyramidal N-methyl group. This curvature facilitates the formation of the iso-hydroperoxide, which is analogous to the iso species CH2 I+ -I- and CHI2 + -I- formed by UV photolysis of CH2 I2 and CHI3 . The iso-hydroperoxide is also structurally reminiscent of carbonyl oxides (R2 C=O+ -O- ) formed in the reaction of carbenes and oxygen. Our DFT results point to intermolecular process, in which the iso-hydroperoxide's fate relates to O-transfer and H2 O dehydration reactions for new insight into the biosynthesis of dihydrobenzofuran natural products.

14.
Photochem Photobiol ; 99(2): 637-641, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35977738

RESUMEN

The sensitized photooxidation of ortho-prenyl phenol is described with evidence that solvent aproticity favors the formation of a dihydrobenzofuran [2-(prop-1-en-2-yl)-2,3-dihydrobenzofuran], a moiety commonly found in natural products. Benzene solvent increased the total quenching rate constant (kT ) of singlet oxygen with prenyl phenol by ~10-fold compared to methanol. A mechanism is proposed with preferential addition of singlet oxygen to prenyl site due to hydrogen bonding with the phenol OH group, which causes a divergence away from the singlet oxygen 'ene' reaction toward the dihydrobenzofuran as the major product. The reaction is a mixed photooxidized system since an epoxide arises by a type I sensitized photooxidation.

15.
Photochem Photobiol ; 99(4): 1131-1141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36337047

RESUMEN

Diketopyrrolopyrrole (DPP) derivatives containing sulfonamide (Sulfonamide-DPP), pyridyl (Dipyridyl-DPP) and N-methylpyridyl (MePyridyl-DPP) substituents were assessed as antibacterial photosensitizers. Non-charged DPPs showed an intense absorption band centered at about 480 nm and green fluorescence emission (ΦF ~ 0.7) in acetonitrile. The absorption of MePyridyl-DPP was bathochromically shifted at 510 nm, with decreased fluorescence emission. Sulfonamide-DPP and Dipyridyl-DPP photosensitized the formation of O2 (1 Δg ) (ΦΔ ~ 0.15-0.17), while the production induced by MePyridyl-DPP was at least 10 times lower. Furthermore, these DPPs produced a photoreduction of NBT similar to that of the control. Photodynamic inactivation induced by DPPs was first investigated at the single-bacterium level of Staphylococcus aureus attached to a surface. After 30 min irradiation, MePyridyl-DPP produced a complete eradication of the bacteria. In bacterial cell suspensions, dicationic DPP induced more than 7 log10 decrease in S. aureus cell survival after 30 min irradiation. Potentiation with iodide anions allowed a complete elimination of bacteria after 15 min therapy. This compound was also effective to eliminate S. aureus cells on biofilms. The results show that MePyridyl-DPP bearing two positive groups provides an amphiphilic character to the structure that improves the interaction with the cell envelop. This effect enhances the photocytotoxic activity of MePyridyl-DPP against bacteria.


Asunto(s)
Fotoquimioterapia , Porfirinas , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Staphylococcus aureus , Pirroles/farmacología , Porfirinas/farmacología , Porfirinas/química , Fotoquimioterapia/métodos , Antibacterianos/farmacología
16.
Antibiotics (Basel) ; 11(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35052968

RESUMEN

The widespread use of antibiotics has led to a considerable increase in the resistance of microorganisms to these agents. Consequently, it is imminent to establish new strategies to combat pathogens. An alternative involves the development of photoactive polymers that represent an interesting strategy to kill microbes and maintain aseptic surfaces. In this sense, a conjugated polymer (PZnTEP) based on Zn(II) 5,10,15,20-tetrakis-[4-(ethynyl)phenyl]porphyrin (ZnTEP) was obtained by the homocoupling reaction of terminal alkyne groups. PZnTEP exhibits a microporous structure with high surface areas allowing better interaction with bacteria. The UV-visible absorption spectra show the Soret and Q bands of PZnTEP red-shifted by about 18 nm compared to those of the monomer. Also, the conjugate presents the two red emission bands, characteristic of porphyrins. This polymer was able to produce singlet molecular oxygen and superoxide radical anion in the presence of NADH. Photocytotoxic activity sensitized by PZnTEP was investigated in bacterial suspensions. No viable Staphylococcus aureus cells were detected using 0.5 µM PZnTEP and 15 min irradiation. Under these conditions, complete photoinactivation of Escherichia coli was observed in the presence of 100 mM KI. Likewise, no survival was detected for E. coli incubated with 1.0 µM PZnTEP after 30 min irradiation. Furthermore, polylactic acid surfaces coated with PZnTEP were able to kill efficiently these bacteria. This surface can be reused for at least three photoinactivation cycles. Therefore, this conjugated photodynamic polymer is an interesting antimicrobial photoactive material for designing and developing self-sterilizing surfaces.

17.
ACS Appl Mater Interfaces ; 14(11): 13872-13882, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35266688

RESUMEN

Electron-transfer processes in lipid membranes are key to biological functions, yet challenging to study because of the intrinsic heterogeneity of the systems. Here, we report spectro-electrochemical measurements on indium tin oxide-supported lipid bilayers toward the selective induction and sensing of redox processes in membranes. Working at neutral pH with a fluorogenic α-tocopherol analogue, the dynamics of the two-electron oxidation of the chromanol to a chromanone and the rapid thermal decay of the latter to a chromoquinone are recorded as a rapid surge and drop in intensity, respectively. Continuous voltage cycling reveals rapid chromoquinone two-electron, two-proton reduction to dihydrochromoquinone at negative bias, followed by slow regeneration of the former at positive bias. The kinetic parameters of these different transitions are readily obtained as a function of applied potentials. The sensitivity and selectivity afforded by the reported method enables monitoring signals equivalent to femtoampere currents with a high signal-to-background ratio. The study provides a new method to monitor membrane redox processes with high sensitivity and minimal concentrations and unravels key dynamic aspects of α-tocopherol redox chemistry.


Asunto(s)
Membrana Dobles de Lípidos , alfa-Tocoferol , Fluorescencia , Cinética , Oxidación-Reducción
18.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36433062

RESUMEN

The appearance of microbes resistant to antibiotics requires the development of alternative therapies for the treatment of infectious diseases. In this work two polymers, PTPPF16-EDA and PZnTPPF16-EDA, were synthesized by the nucleophilic aromatic substitution of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin and its Zn(II) complex with ethylenediamine, respectively. In these structures, the tetrapyrrolic macrocycles were N,N'-ethylene crosslinked, which gives them greater mobility. The absorption spectra of the polymers showed a bathochromic shift of the Soret band of ~10 nm with respect to the monomers. This effect was also found in the red fluorescence emission peaks. Furthermore, both polymeric materials produced singlet molecular oxygen with high quantum yields. In addition, they were capable of generating superoxide anion radicals. Photodynamic inactivation sensitized by these polymers was tested in Staphylococcus aureus and Escherichia coli bacteria. A decrease in cell viability greater than 7 log (99.9999%) was observed in S. aureus incubated with 0.5 µM photosensitizer upon 30 min of irradiation. Under these conditions, a low inactivation of E. coli (0.5 log) was found. However, when the cells were treated with KI, the elimination of the Gram-negative bacteria was achieved. Therefore, these polymeric structures are interesting antimicrobial photosensitizing materials for the inactivation of pathogens.

19.
Methods Mol Biol ; 2202: 125-135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32857352

RESUMEN

Reactive oxygen species (ROS) production within biofilms is studied with a simple and easy setup based on fluorescence microscopy. Herein, a biofilm is exposed to different ROS inducers: a bactericidal antibiotic (ciprofloxacin) and a BODIPY-based photosensitizer (I2B-OAc). Real-time ROS induction in the core of the biofilms is monitored utilizing two fluorescent reporters-AMDA and H2DCFDA-the first one with selectivity toward singlet oxygen (1O2) and the latest for other ROS (O2•-, H2O2, and OH•-). A point-by-point methodology is reported, starting with the sample preparation all the way through the microscope setup and, finally, processing of the images.


Asunto(s)
Microscopía Fluorescente/métodos , Especies Reactivas de Oxígeno/análisis , Oxígeno Singlete/análisis , Antibacterianos/farmacología , Bacterias/metabolismo , Biopelículas/efectos de los fármacos , Compuestos de Boro/farmacología , Ciprofloxacina/farmacología , Peróxido de Hidrógeno , Oxidación-Reducción/efectos de los fármacos , Oxígeno/metabolismo , Fármacos Fotosensibilizantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxígeno Singlete/metabolismo
20.
Photochem Photobiol ; 97(6): 1431-1444, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34115882

RESUMEN

In this article, four novel fulleropyrrolidines derivatives were synthesized to study how the effect of polarity and positive charge distribution can influence the efficacy of photodynamic inactivation treatments to kill bacteria. The design of the photosensitizers was based on DFT calculations that allowed us to estimate the dipolar moment of the molecules. Neutral compounds bearing N-methyl bis-acetoxy-ethyl (1) and bis-hydroxyethyl (2) amine were the starting material to obtain the dicationic analogs N,N-dimethyl bis-methoxyethyl (3), and bis-acetoxy-ethyl) (4) methylammonio. As expected from fullerene C60 derivatives, compounds 1-4 absorb in the UV region, with a peak at 430 nm, a broader range of absorption up to 710 nm, and exhibit weak fluorescence emission in toluene and reverse micelles. In the biomimetic AOT micellar system, the highest singlet oxygen photosensitization was found for compounds 1, followed by 3, 2, and 4. Whereas 4 was the most effective reducing nitro blue tetrazolium in the presence of ß-NADH. The influence of type I and type II mechanism on the photodynamic activity of compounds 3 and 4 was further examined in the presence of L-tryptophan and two reactive oxygen species scavengers. In vitro experiments indicated that the compounds with the highest dipolar moments, 3 (37.19 D) and 4 (38.46 D), inactivated methicillin-resistant Staphylococcus aureus and Escherichia coli bacteria using an energy dose <2.4 J cm-2 . No inactivation was observed for the neutral analogs with the lowest dipolar moments. These findings help to optimize sensitizer structures to improve photodynamic inactivation.


Asunto(s)
Fulerenos , Staphylococcus aureus Resistente a Meticilina , Escherichia coli , Fulerenos/química , Fulerenos/farmacología , Micelas , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Oxígeno Singlete/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA