Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 627(8003): 328-334, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480966

RESUMEN

As airborne methane surveys of oil and gas systems continue to discover large emissions that are missing from official estimates1-4, the true scope of methane emissions from energy production has yet to be quantified. We integrate approximately one million aerial site measurements into regional emissions inventories for six regions in the USA, comprising 52% of onshore oil and 29% of gas production over 15 aerial campaigns. We construct complete emissions distributions for each, employing empirically grounded simulations to estimate small emissions. Total estimated emissions range from 0.75% (95% confidence interval (CI) 0.65%, 0.84%) of covered natural gas production in a high-productivity, gas-rich region to 9.63% (95% CI 9.04%, 10.39%) in a rapidly expanding, oil-focused region. The six-region weighted average is 2.95% (95% CI 2.79%, 3.14%), or roughly three times the national government inventory estimate5. Only 0.05-1.66% of well sites contribute the majority (50-79%) of well site emissions in 11 out of 15 surveys. Ancillary midstream facilities, including pipelines, contribute 18-57% of estimated regional emissions, similarly concentrated in a small number of point sources. Together, the emissions quantified here represent an annual loss of roughly US$1 billion in commercial gas value and a US$9.3 billion annual social cost6. Repeated, comprehensive, regional remote-sensing surveys offer a path to detect these low-frequency, high-consequence emissions for rapid mitigation, incorporation into official emissions inventories and a clear-eyed assessment of the most effective emission-finding technologies for a given region.

2.
Nature ; 575(7781): 180-184, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31695210

RESUMEN

Methane is a powerful greenhouse gas and is targeted for emissions mitigation by the US state of California and other jurisdictions worldwide1,2. Unique opportunities for mitigation are presented by point-source emitters-surface features or infrastructure components that are typically less than 10 metres in diameter and emit plumes of highly concentrated methane3. However, data on point-source emissions are sparse and typically lack sufficient spatial and temporal resolution to guide their mitigation and to accurately assess their magnitude4. Here we survey more than 272,000 infrastructure elements in California using an airborne imaging spectrometer that can rapidly map methane plumes5-7. We conduct five campaigns over several months from 2016 to 2018, spanning the oil and gas, manure-management and waste-management sectors, resulting in the detection, geolocation and quantification of emissions from 564 strong methane point sources. Our remote sensing approach enables the rapid and repeated assessment of large areas at high spatial resolution for a poorly characterized population of methane emitters that often appear intermittently and stochastically. We estimate net methane point-source emissions in California to be 0.618 teragrams per year (95 per cent confidence interval 0.523-0.725), equivalent to 34-46 per cent of the state's methane inventory8 for 2016. Methane 'super-emitter' activity occurs in every sector surveyed, with 10 per cent of point sources contributing roughly 60 per cent of point-source emissions-consistent with a study of the US Four Corners region that had a different sectoral mix9. The largest methane emitters in California are a subset of landfills, which exhibit persistent anomalous activity. Methane point-source emissions in California are dominated by landfills (41 per cent), followed by dairies (26 per cent) and the oil and gas sector (26 per cent). Our data have enabled the identification of the 0.2 per cent of California's infrastructure that is responsible for these emissions. Sharing these data with collaborating infrastructure operators has led to the mitigation of anomalous methane-emission activity10.


Asunto(s)
Monitoreo del Ambiente , Metano/análisis , Administración de Residuos , California , Efecto Invernadero , Estiércol , Metano/química , Metano/metabolismo , Gas Natural , Industria del Petróleo y Gas/métodos , Petróleo , Aguas Residuales
3.
Proc Natl Acad Sci U S A ; 119(38): e2202338119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36099297

RESUMEN

Understanding, prioritizing, and mitigating methane (CH4) emissions requires quantifying CH4 budgets from facility scales to regional scales with the ability to differentiate between source sectors. We deployed a tiered observing system for multiple basins in the United States (San Joaquin Valley, Uinta, Denver-Julesburg, Permian, Marcellus). We quantify strong point source emissions (>10 kg CH4 h-1) using airborne imaging spectrometers, attribute them to sectors, and assess their intermittency with multiple revisits. We compare these point source emissions to total basin CH4 fluxes derived from inversion of Sentinel-5p satellite CH4 observations. Across basins, point sources make up on average 40% of the regional flux. We sampled some basins several times across multiple months and years and find a distinct bimodal structure to emission timescales: the total point source budget is split nearly in half by short-lasting and long-lasting emission events. With the increasing airborne and satellite observing capabilities planned for the near future, tiered observing systems will more fully quantify and attribute CH4 emissions from facility to regional scales, which is needed to effectively and efficiently reduce methane emissions.


Asunto(s)
Contaminantes Atmosféricos , Metano , Contaminantes Atmosféricos/análisis , Metano/análisis , Estados Unidos
4.
Proc Natl Acad Sci U S A ; 117(43): 26681-26687, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046637

RESUMEN

Measurements of Δ14C and CO2 can cleanly separate biogenic and fossil contributions to CO2 enhancements above background. Our measurements of these tracers in air around Los Angeles in 2015 reveal high values of fossil CO2 and a significant and seasonally varying contribution of CO2 from the urban biosphere. The biogenic CO2 is composed of sources such as biofuel combustion and human metabolism and an urban biospheric component likely originating from urban vegetation, including turf and trees. The urban biospheric component is a source in winter and a sink in summer, with an estimated amplitude of 4.3 parts per million (ppm), equivalent to 33% of the observed annual mean fossil fuel contribution of 13 ppm. While the timing of the net carbon sink is out of phase with wintertime rainfall and the sink seasonality of Southern California Mediterranean ecosystems (which show maximum uptake in spring), it is in phase with the seasonal cycle of urban water usage, suggesting that irrigated urban vegetation drives the biospheric signal we observe. Although 2015 was very dry, the biospheric seasonality we observe is similar to the 2006-2015 mean derived from an independent Δ14C record in the Los Angeles area, indicating that 2015 biospheric exchange was not highly anomalous. The presence of a large and seasonally varying biospheric signal even in the relatively dry climate of Los Angeles implies that atmospheric estimates of fossil fuel-CO2 emissions in other, potentially wetter, urban areas will be biased in the absence of reliable methods to separate fossil and biogenic CO2.


Asunto(s)
Dióxido de Carbono/análisis , Isótopos de Carbono/análisis , Monitoreo del Ambiente/métodos , Ciclo del Carbono , Combustibles Fósiles , Humanos , Los Angeles , Estaciones del Año , Emisiones de Vehículos
5.
Environ Sci Technol ; 56(14): 10517-10529, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35797726

RESUMEN

Methane (CH4) emission estimates from top-down studies over oil and gas basins have revealed systematic underestimation of CH4 emissions in current national inventories. Sparse but extremely large amounts of CH4 from oil and gas production activities have been detected across the globe, resulting in a significant increase of the overall oil and gas contribution. However, attribution to specific facilities remains a major challenge unless high-spatial-resolution images provide sufficient granularity within the oil and gas basin. In this paper, we monitor known oil and gas infrastructures across the globe using recurrent Sentinel-2 imagery to detect and quantify more than 1200 CH4 emissions. In combination with emission estimates from airborne and Sentinel-5P measurements, we demonstrate the robustness of the fit to a power law from 0.1 tCH4/h to 600 tCH4/h. We conclude here that the prevalence of ultraemitters (>25tCH4/h) detected globally by Sentinel-5P directly relates to emission occurrences below its detection threshold in the range >2tCH4/h, which correspond to large emitters covered by Sentinel-2. We also verified that this relation is also valid at a more local scale for two specific countries, namely, Algeria and Turkmenistan, and the Permian basin in the United States.


Asunto(s)
Contaminantes Atmosféricos , Metano , Contaminantes Atmosféricos/análisis , Metano/análisis , Gas Natural/análisis , Estados Unidos
6.
Geophys Res Lett ; 48(11): e2021GL092744, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34149111

RESUMEN

Responses to COVID-19 have resulted in unintended reductions of city-scale carbon dioxide (CO2) emissions. Here, we detect and estimate decreases in CO2 emissions in Los Angeles and Washington DC/Baltimore during March and April 2020. We present three lines of evidence using methods that have increasing model dependency, including an inverse model to estimate relative emissions changes in 2020 compared to 2018 and 2019. The March decrease (25%) in Washington DC/Baltimore is largely supported by a drop in natural gas consumption associated with a warm spring whereas the decrease in April (33%) correlates with changes in gasoline fuel sales. In contrast, only a fraction of the March (17%) and April (34%) reduction in Los Angeles is explained by traffic declines. Methods and measurements used herein highlight the advantages of atmospheric CO2 observations for providing timely insights into rapidly changing emissions patterns that can empower cities to course-correct CO2 reduction activities efficiently.

7.
Environ Sci Technol ; 54(15): 9254-9264, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32633497

RESUMEN

This study derives methane emission rates from 92 airborne observations collected over 23 facilities including 5 refineries, 10 landfills, 4 wastewater treatment plants (POTWs), 2 composting operations, and 2 dairies in the San Francisco Bay Area. Emission rates are measured using an airborne mass-balance technique from a low-flying aircraft. Annual measurement-based sectorwide methane emissions are 19,000 ± 2300 Mg for refineries, 136,700 ± 25,900 Mg for landfills, 11,900 ± 1,500 Mg for POTWs, and 11,100 ± 3,400 Mg for composting. The average of measured emissions for each refinery ranges from 4 to 23 times larger than the corresponding emissions reported to regulatory agencies, while measurement-derived landfill and POTW estimates are approximately twice the current inventory estimates. Significant methane emissions at composting facilities indicate that a California mandate to divert organics from landfills to composting may not be an effective measure for mitigating methane emissions unless best management practices are instituted at composting facilities. Complementary evidence from airborne remote sensing imagery indicates atmospheric venting from refinery hydrogen plants, landfill working surfaces, composting stockpiles, etc., to be among the specific source types responsible for the observed discrepancies. This work highlights the value of multiple measurement approaches to accurately estimate facility-scale methane emissions and perform source attribution at subfacility scales to guide and verify effective mitigation policy and action.


Asunto(s)
Contaminantes Atmosféricos , Metano , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Metano/análisis , San Francisco , Instalaciones de Eliminación de Residuos
8.
Environ Sci Technol ; 53(16): 9636-9645, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31347357

RESUMEN

California methane (CH4) emissions are quantified for three years from two tower networks and one aircraft campaign. We used backward trajectory simulations and a mesoscale Bayesian inverse model, initialized by three inventories, to achieve the emission quantification. Results show total statewide CH4 emissions of 2.05 ± 0.26 (at 95% confidence) Tg/yr, which is 1.14 to 1.47 times greater than the anthropogenic emission estimates by California Air Resource Board (CARB). Some of differences could be biogenic emissions, superemitter point sources, and other episodic emissions which may not be completely included in the CARB inventory. San Joaquin Valley (SJV) has the largest CH4 emissions (0.94 ± 0.18 Tg/yr), followed by the South Coast Air Basin, the Sacramento Valley, and the San Francisco Bay Area at 0.39 ± 0.18, 0.21 ± 0.04, and 0.16 ± 0.05 Tg/yr, respectively. The dairy and oil/gas production sources in the SJV contribute 0.44 ± 0.36 and 0.22 ± 0.23 Tg CH4/yr, respectively. This study has important policy implications for regulatory programs, as it provides a thorough multiyear evaluation of the emissions inventory using independent atmospheric measurements and investigates the utility of a complementary multiplatform approach in understanding the spatial and temporal patterns of CH4 emissions in the state and identifies opportunities for the expansion and applications of the monitoring network.


Asunto(s)
Contaminantes Atmosféricos , Metano , Aeronaves , Teorema de Bayes , California , San Francisco
10.
Science ; 383(6690): 1499-1504, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547284

RESUMEN

Methane emissions from solid waste may represent a substantial fraction of the global anthropogenic budget, but few comprehensive studies exist to assess inventory assumptions. We quantified emissions at hundreds of large landfills across 18 states in the United States between 2016 and 2022 using airborne imaging spectrometers. Spanning 20% of open United States landfills, this represents the most systematic measurement-based study of methane point sources of the waste sector. We detected significant point source emissions at a majority (52%) of these sites, many with emissions persisting over multiple revisits (weeks to years). We compared these against independent contemporaneous in situ airborne observations at 15 landfills and established good agreement. Our findings indicate a need for long-term, synoptic-scale monitoring of landfill emissions in the context of climate change mitigation policy.

11.
Sci Adv ; 9(46): eadh2391, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976355

RESUMEN

Carbon dioxide and methane emissions are the two primary anthropogenic climate-forcing agents and an important source of uncertainty in the global carbon budget. Uncertainties are further magnified when emissions occur at fine spatial scales (<1 km), making attribution challenging. We present the first observations from NASA's Earth Surface Mineral Dust Source Investigation (EMIT) imaging spectrometer showing quantification and attribution of fine-scale methane (0.3 to 73 tonnes CH4 hour-1) and carbon dioxide sources (1571 to 3511 tonnes CO2 hour-1) spanning the oil and gas, waste, and energy sectors. For selected countries observed during the first 30 days of EMIT operations, methane emissions varied at a regional scale, with the largest total emissions observed for Turkmenistan (731 ± 148 tonnes CH4 hour-1). These results highlight the contributions of current and planned point source imagers in closing global carbon budgets.

12.
Science ; 377(6614): 1486-1487, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36173839

RESUMEN

Emissions from flaring threaten the global climate and the health of local communities.

13.
Environ Sci Technol Lett ; 9(11): 969-974, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36398313

RESUMEN

The rapid reduction of methane emissions, especially from oil and gas (O&G) operations, is a critical part of slowing global warming. However, few studies have attempted to specifically characterize emissions from natural gas gathering pipelines, which tend to be more difficult to monitor on the ground than other forms of O&G infrastructure. In this study, we use methane emission measurements collected from four recent aerial campaigns in the Permian Basin, the most prolific O&G basin in the United States, to estimate a methane emission factor for gathering lines. From each campaign, we calculate an emission factor between 2.7 (+1.9/-1.8, 95% confidence interval) and 10.0 (+6.4/-6.2) Mg of CH4 year-1 km-1, 14-52 times higher than the U.S. Environmental Protection Agency's national estimate for gathering lines and 4-13 times higher than the highest estimate derived from a published ground-based survey of gathering lines. Using Monte Carlo techniques, we demonstrate that aerial data collection allows for a greater sample size than ground-based data collection and therefore more comprehensive identification of emission sources that comprise the heavy tail of methane emissions distributions. Our results suggest that pipeline emissions are underestimated in current inventories and highlight the importance of a large sample size when calculating basinwide pipeline emission factors.

14.
Sci Data ; 9(1): 361, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750672

RESUMEN

Urban regions emit a large fraction of anthropogenic emissions of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4) that contribute to modern-day climate change. As such, a growing number of urban policymakers and stakeholders are adopting emission reduction targets and implementing policies to reach those targets. Over the past two decades research teams have established urban GHG monitoring networks to determine how much, where, and why a particular city emits GHGs, and to track changes in emissions over time. Coordination among these efforts has been limited, restricting the scope of analyses and insights. Here we present a harmonized data set synthesizing urban GHG observations from cities with monitoring networks across North America that will facilitate cross-city analyses and address scientific questions that are difficult to address in isolation.

15.
Sci Adv ; 7(27)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34193415

RESUMEN

Industrial emissions play a major role in the global methane budget. The Permian basin is thought to be responsible for almost half of the methane emissions from all U.S. oil- and gas-producing regions, but little is known about individual contributors, a prerequisite for mitigation. We use a new class of satellite measurements acquired during several days in 2019 and 2020 to perform the first regional-scale and high-resolution survey of methane sources in the Permian. We find an unexpectedly large number of extreme point sources (37 plumes with emission rates >500 kg hour-1), which account for a range between 31 and 53% of the estimated emissions in the sampled area. Our analysis reveals that new facilities are major emitters in the area, often due to inefficient flaring operations (20% of detections). These results put current practices into question and are relevant to guide emission reduction efforts.

16.
Artículo en Inglés | MEDLINE | ID: mdl-30984251

RESUMEN

We report continuous surface observations of carbon dioxide (CO2) and methane (CH4) from the Los Angeles (LA) Megacity Carbon Project during 2015. We devised a calibration strategy, methods for selection of background air masses, calculation of urban enhancements, and a detailed algorithm for estimating uncertainties in urban-scale CO2 and CH4 measurements. These methods are essential for understanding carbon fluxes from the LA megacity and other complex urban environments globally. We estimate background mole fractions entering LA using observations from four "extra-urban" sites including two "marine" sites located south of LA in La Jolla (LJO) and offshore on San Clemente Island (SCI), one "continental" site located in Victorville (VIC), in the high desert northeast of LA, and one "continental/mid-troposphere" site located on Mount Wilson (MWO) in the San Gabriel Mountains. We find that a local marine background can be established to within ~1 ppm CO2 and ~10 ppb CH4 using these local measurement sites. Overall, atmospheric carbon dioxide and methane levels are highly variable across Los Angeles. "Urban" and "suburban" sites show moderate to large CO2 and CH4 enhancements relative to a marine background estimate. The USC (University of Southern California) site near downtown LA exhibits median hourly enhancements of ~20 ppm CO2 and ~150 ppb CH4 during 2015 as well as ~15 ppm CO2 and ~80 ppb CH4 during mid-afternoon hours (12:00-16:00 LT, local time), which is the typical period of focus for flux inversions. The estimated measurement uncertainty is typically better than 0.1 ppm CO2 and 1 ppb CH4 based on the repeated standard gas measurements from the LA sites during the last 2 years, similar to Andrews et al. (2014). The largest component of the measurement uncertainty is due to the single-point calibration method; however, the uncertainty in the background mole fraction is much larger than the measurement uncertainty. The background uncertainty for the marine background estimate is ~10 and ~15 % of the median mid-afternoon enhancement near downtown LA for CO2 and CH4, respectively. Overall, analytical and background uncertainties are small relative to the local CO2 and CH4 enhancements; however, our results suggest that reducing the uncertainty to less than 5 % of the median mid-afternoon enhancement will require detailed assessment of the impact of meteorology on background conditions.

17.
J Geophys Res Atmos ; 121(16): 9862-9878, 2016 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-27867786

RESUMEN

Atmospheric observations of greenhouse gases provide essential information on sources and sinks of these key atmospheric constituents. To quantify fluxes from atmospheric observations, representation of transport-especially vertical mixing-is a necessity and often a source of error. We report on remotely sensed profiles of vertical aerosol distribution taken over a 2 year period in Pasadena, California. Using an automated analysis system, we estimate daytime mixing layer depth, achieving high confidence in the afternoon maximum on 51% of days with profiles from a Sigma Space Mini Micropulse LiDAR (MiniMPL) and on 36% of days with a Vaisala CL51 ceilometer. We note that considering ceilometer data on a logarithmic scale, a standard method, introduces, an offset in mixing height retrievals. The mean afternoon maximum mixing height is 770 m Above Ground Level in summer and 670 m in winter, with significant day-to-day variance (within season σ = 220m≈30%). Taking advantage of the MiniMPL's portability, we demonstrate the feasibility of measuring the detailed horizontal structure of the mixing layer by automobile. We compare our observations to planetary boundary layer (PBL) heights from sonde launches, North American regional reanalysis (NARR), and a custom Weather Research and Forecasting (WRF) model developed for greenhouse gas (GHG) monitoring in Los Angeles. NARR and WRF PBL heights at Pasadena are both systematically higher than measured, NARR by 2.5 times; these biases will cause proportional errors in GHG flux estimates using modeled transport. We discuss how sustained lidar observations can be used to reduce flux inversion error by selecting suitable analysis periods, calibrating models, or characterizing bias for correction in post processing.

18.
Philos Trans A Math Phys Eng Sci ; 372(2031)2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25404684

RESUMEN

We summarize a portfolio of possible field experiments on solar radiation management (SRM) and related technologies. The portfolio is intended to support analysis of potential field research related to SRM including discussions about the overall merit and risk of such research as well as mechanisms for governing such research and assessments of observational needs. The proposals were generated with contributions from leading researchers at a workshop held in March 2014 at which the proposals were critically reviewed. The proposed research dealt with three major classes of SRM proposals: marine cloud brightening, stratospheric aerosols and cirrus cloud manipulation. The proposals are summarized here along with an analysis exploring variables such as space and time scale, risk and radiative forcing. Possible gaps, biases and cross-cutting considerations are discussed. Finally, suggestions for plausible next steps in the development of a systematic research programme are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA