Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nucleic Acids Res ; 52(D1): D762-D769, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37962425

RESUMEN

The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) contains over 315 000 bacterial and archaeal genomes and 236 million proteins with up-to-date and consistent annotation. In the past 3 years, we have expanded the diversity of the RefSeq collection by including the best quality metagenome-assembled genomes (MAGs) submitted to INSDC (DDBJ, ENA and GenBank), while maintaining its quality by adding validation checks. Assemblies are now more stringently evaluated for contamination and for completeness of annotation prior to acceptance into RefSeq. MAGs now account for over 17000 assemblies in RefSeq, split over 165 orders and 362 families. Changes in the Prokaryotic Genome Annotation Pipeline (PGAP), which is used to annotate nearly all RefSeq assemblies include better detection of protein-coding genes. Nearly 83% of RefSeq proteins are now named by a curated Protein Family Model, a 4.7% increase in the past three years ago. In addition to literature citations, Enzyme Commission numbers, and gene symbols, Gene Ontology terms are now assigned to 48% of RefSeq proteins, allowing for easier multi-genome comparison. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/. PGAP is available as a stand-alone tool able to produce GenBank-ready files at https://github.com/ncbi/pgap.


Asunto(s)
Archaea , Bacterias , Bases de Datos de Ácidos Nucleicos , Metagenoma , Archaea/genética , Bacterias/genética , Bases de Datos de Ácidos Nucleicos/normas , Bases de Datos de Ácidos Nucleicos/tendencias , Genoma Arqueal/genética , Genoma Bacteriano/genética , Internet , Anotación de Secuencia Molecular , Proteínas/genética
2.
Nucleic Acids Res ; 49(D1): D1020-D1028, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33270901

RESUMEN

The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) contains nearly 200 000 bacterial and archaeal genomes and 150 million proteins with up-to-date annotation. Changes in the Prokaryotic Genome Annotation Pipeline (PGAP) since 2018 have resulted in a substantial reduction in spurious annotation. The hierarchical collection of protein family models (PFMs) used by PGAP as evidence for structural and functional annotation was expanded to over 35 000 protein profile hidden Markov models (HMMs), 12 300 BlastRules and 36 000 curated CDD architectures. As a result, >122 million or 79% of RefSeq proteins are now named based on a match to a curated PFM. Gene symbols, Enzyme Commission numbers or supporting publication attributes are available on over 40% of the PFMs and are inherited by the proteins and features they name, facilitating multi-genome analyses and connections to the literature. In adherence with the principles of FAIR (findable, accessible, interoperable, reusable), the PFMs are available in the Protein Family Models Entrez database to any user. Finally, the reference and representative genome set, a taxonomically diverse subset of RefSeq prokaryotic genomes, is now recalculated regularly and available for download and homology searches with BLAST. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genoma Arqueal/genética , Genoma Bacteriano/genética , Anotación de Secuencia Molecular/métodos , Proteínas/genética , Curaduría de Datos/métodos , Minería de Datos/métodos , Genómica/métodos , Internet , Proteínas/clasificación , Interfaz Usuario-Computador
3.
PLoS Genet ; 8(7): e1002784, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22792073

RESUMEN

We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.


Asunto(s)
Genoma Bacteriano , Plantas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Análisis de Secuencia de ADN , Animales , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Bacteriocinas/genética , Heterogeneidad Genética , Variación Genética , Interacciones Huésped-Patógeno/genética , Insectos/genética , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas/genética , Plantas/microbiología , Secuencias Repetitivas de Ácidos Nucleicos/genética , Resorcinoles/metabolismo
4.
J Bacteriol ; 194(16): 4448-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22843585

RESUMEN

Mycoplasma mycoides subsp. mycoides small colony biotype (SC) is the high-consequence animal pathogen causing contagious bovine pleuropneumonia. We report the complete genome sequences of the pathogenic strain M. mycoides subsp. mycoides SC Gladysdale and a close phylogenetic relative, Mycoplasma leachii PG50(T), another bovine pathogen of the M. mycoides phylogenetic clade.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Mycoplasma mycoides/genética , Análisis de Secuencia de ADN , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Datos de Secuencia Molecular , Mycoplasma mycoides/aislamiento & purificación , Pleuroneumonía Contagiosa/microbiología
5.
Nucleic Acids Res ; 38(Database issue): D408-14, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19843611

RESUMEN

Pathema (http://pathema.jcvi.org) is one of the eight Bioinformatics Resource Centers (BRCs) funded by the National Institute of Allergy and Infectious Disease (NIAID) designed to serve as a core resource for the bio-defense and infectious disease research community. Pathema strives to support basic research and accelerate scientific progress for understanding, detecting, diagnosing and treating an established set of six target NIAID Category A-C pathogens: Category A priority pathogens; Bacillus anthracis and Clostridium botulinum, and Category B priority pathogens; Burkholderia mallei, Burkholderia pseudomallei, Clostridium perfringens and Entamoeba histolytica. Each target pathogen is represented in one of four distinct clade-specific Pathema web resources and underlying databases developed to target the specific data and analysis needs of each scientific community. All publicly available complete genome projects of phylogenetically related organisms are also represented, providing a comprehensive collection of organisms for comparative analyses. Pathema facilitates the scientific exploration of genomic and related data through its integration with web-based analysis tools, customized to obtain, display, and compute results relevant to ongoing pathogen research. Pathema serves the bio-defense and infectious disease research community by disseminating data resulting from pathogen genome sequencing projects and providing access to the results of inter-genomic comparisons for these organisms.


Asunto(s)
Infecciones Bacterianas/microbiología , Enfermedades Transmisibles/microbiología , Biología Computacional/métodos , Bases de Datos Genéticas , Secuencia de Aminoácidos , Animales , Infecciones Bacterianas/diagnóstico , Biología Computacional/tendencias , Genoma Bacteriano , Humanos , Almacenamiento y Recuperación de la Información/métodos , Internet , Datos de Secuencia Molecular , National Institute of Allergy and Infectious Diseases (U.S.) , Homología de Secuencia de Aminoácido , Programas Informáticos , Estados Unidos
6.
J Bacteriol ; 193(15): 4025-6, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21622758

RESUMEN

Although Bacteroides vulgatus is one of the most prevalent microorganisms in the human gastrointestinal tract, little is known about the genetic potential of this species. Here, we describe the annotated draft genome sequence of B. vulgatus PC510 isolated from human feces.


Asunto(s)
Bacteroides/genética , Bacteroides/aislamiento & purificación , Heces/microbiología , Genoma Bacteriano , Secuencia de Bases , Humanos , Datos de Secuencia Molecular
7.
J Bacteriol ; 193(5): 1288-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21183674

RESUMEN

While the microbiota resident in the human gut is now known to provide a range of functions relevant to host health, many of the microbial members of the community have not yet been cultured or are represented by a limited number of isolates. We describe here the draft genome sequence of Turicibacter sanguinis PC909, isolated from a pooled healthy human fecal sample as part of the Australian Human Gut Microbiome Project.


Asunto(s)
Heces/microbiología , Genoma Bacteriano , Bacterias Grampositivas/genética , Humanos , Datos de Secuencia Molecular
8.
Nature ; 432(7019): 910-3, 2004 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-15602564

RESUMEN

Since the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise approximately 10-20% of coastal and oceanic mixed-layer bacterioplankton. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.


Asunto(s)
Adaptación Fisiológica/genética , Genoma Bacteriano , Plancton/genética , Plancton/fisiología , Roseobacter/genética , Roseobacter/fisiología , Agua de Mar/microbiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Genes Bacterianos/genética , Biología Marina , Datos de Secuencia Molecular , Océanos y Mares , Filogenia , Plancton/clasificación , ARN Ribosómico 16S/genética , Roseobacter/clasificación
9.
Appl Environ Microbiol ; 75(7): 2046-56, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19201974

RESUMEN

The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N(2) fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Genoma Bacteriano , Microbiología del Suelo , Antibacterianos/biosíntesis , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Cianobacterias/genética , ADN Bacteriano/química , Hongos/genética , Macrólidos/metabolismo , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Filogenia , Proteobacteria/genética , Análisis de Secuencia de ADN , Homología de Secuencia
10.
PLoS Biol ; 3(1): e15, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15660156

RESUMEN

Sequencing and comparative genome analysis of four strains of Campylobacter including C. lari RM2100, C. upsaliensis RM3195, and C. coli RM2228 has revealed major structural differences that are associated with the insertion of phage- and plasmid-like genomic islands, as well as major variations in the lipooligosaccharide complex. Poly G tracts are longer, are greater in number, and show greater variability in C. upsaliensis than in the other species. Many genes involved in host colonization, including racR/S, cadF, cdt, ciaB, and flagellin genes, are conserved across the species, but variations that appear to be species specific are evident for a lipooligosaccharide locus, a capsular (extracellular) polysaccharide locus, and a novel Campylobacter putative licABCD virulence locus. The strains also vary in their metabolic profiles, as well as their resistance profiles to a range of antibiotics. It is evident that the newly identified hypothetical and conserved hypothetical proteins, as well as uncharacterized two-component regulatory systems and membrane proteins, may hold additional significant information on the major differences in virulence among the species, as well as the specificity of the strains for particular hosts.


Asunto(s)
Campylobacter/genética , Campylobacter/patogenicidad , Genoma Bacteriano , Virulencia/genética , Animales , Proteínas Bacterianas/genética , Enfermedades de las Aves/microbiología , Aves , Campylobacter/clasificación , Bovinos , Enfermedades de los Bovinos/microbiología , Funciones de Verosimilitud , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Porcinos , Enfermedades de los Porcinos/microbiología
11.
Nat Biotechnol ; 23(7): 873-8, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15980861

RESUMEN

Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.


Asunto(s)
Genoma Bacteriano , Pseudomonas fluorescens/genética , Secuencia de Bases , Transporte Biológico/genética , Genes Bacterianos , Datos de Secuencia Molecular , Familia de Multigenes , Plantas/microbiología , Pseudomonas fluorescens/metabolismo , Análisis de Secuencia de ADN , Sideróforos/biosíntesis , Sideróforos/genética
12.
PLoS Genet ; 1(5): e65, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16311624

RESUMEN

We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO) as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a "minimal" model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously.


Asunto(s)
Monóxido de Carbono/química , Genoma Bacteriano , Peptococcaceae/genética , Secuencia de Bases , Genes Bacterianos , Genómica , Calor , Modelos Biológicos , Datos de Secuencia Molecular , Estrés Oxidativo , Análisis de Secuencia de ADN
13.
PLoS Biol ; 2(3): E69, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15024419

RESUMEN

The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the alpha-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel-D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections.


Asunto(s)
Genómica/métodos , Wolbachia/genética , Adenosina Trifosfato/química , Animales , Linaje de la Célula , ADN/química , ADN/genética , Cartilla de ADN/química , Drosophila melanogaster/microbiología , Evolución Molecular , Eliminación de Gen , Duplicación de Gen , Biblioteca de Genes , Genes Bacterianos , Genoma , Genoma Bacteriano , Glucólisis , Secuencias Repetitivas Esparcidas , Modelos Genéticos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Parásitos , Filogenia , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , Purinas/química
14.
PLoS Biol ; 2(10): e303, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15383840

RESUMEN

Methanotrophs are ubiquitous bacteria that can use the greenhouse gas methane as a sole carbon and energy source for growth, thus playing major roles in global carbon cycles, and in particular, substantially reducing emissions of biologically generated methane to the atmosphere. Despite their importance, and in contrast to organisms that play roles in other major parts of the carbon cycle such as photosynthesis, no genome-level studies have been published on the biology of methanotrophs. We report the first complete genome sequence to our knowledge from an obligate methanotroph, Methylococcus capsulatus (Bath), obtained by the shotgun sequencing approach. Analysis revealed a 3.3-Mb genome highly specialized for a methanotrophic lifestyle, including redundant pathways predicted to be involved in methanotrophy and duplicated genes for essential enzymes such as the methane monooxygenases. We used phylogenomic analysis, gene order information, and comparative analysis with the partially sequenced methylotroph Methylobacterium extorquens to detect genes of unknown function likely to be involved in methanotrophy and methylotrophy. Genome analysis suggests the ability of M. capsulatus to scavenge copper (including a previously unreported nonribosomal peptide synthetase) and to use copper in regulation of methanotrophy, but the exact regulatory mechanisms remain unclear. One of the most surprising outcomes of the project is evidence suggesting the existence of previously unsuspected metabolic flexibility in M. capsulatus, including an ability to grow on sugars, oxidize chemolithotrophic hydrogen and sulfur, and live under reduced oxygen tension, all of which have implications for methanotroph ecology. The availability of the complete genome of M. capsulatus (Bath) deepens our understanding of methanotroph biology and its relationship to global carbon cycles. We have gained evidence for greater metabolic flexibility than was previously known, and for genetic components that may have biotechnological potential.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genoma , Metano/metabolismo , Methylococcus capsulatus/genética , Proteínas Bacterianas/química , Carbono/química , Transporte de Electrón , Ácidos Grasos/química , Genoma Bacteriano , Genómica/métodos , Metano/química , Modelos Biológicos , Datos de Secuencia Molecular , Nitrógeno/química , Oxígeno/química , Oxígeno/metabolismo , Péptidos/química , Filogenia , Análisis de Secuencia de ADN
15.
Nat Biotechnol ; 22(5): 554-9, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15077118

RESUMEN

Desulfovibrio vulgaris Hildenborough is a model organism for studying the energy metabolism of sulfate-reducing bacteria (SRB) and for understanding the economic impacts of SRB, including biocorrosion of metal infrastructure and bioremediation of toxic metal ions. The 3,570,858 base pair (bp) genome sequence reveals a network of novel c-type cytochromes, connecting multiple periplasmic hydrogenases and formate dehydrogenases, as a key feature of its energy metabolism. The relative arrangement of genes encoding enzymes for energy transduction, together with inferred cellular location of the enzymes, provides a basis for proposing an expansion to the 'hydrogen-cycling' model for increasing energy efficiency in this bacterium. Plasmid-encoded functions include modification of cell surface components, nitrogen fixation and a type-III protein secretion system. This genome sequence represents a substantial step toward the elucidation of pathways for reduction (and bioremediation) of pollutants such as uranium and chromium and offers a new starting point for defining this organism's complex anaerobic respiration.


Asunto(s)
Desulfovibrio vulgaris/genética , Genoma Bacteriano , Desulfovibrio vulgaris/metabolismo , Metabolismo Energético , Datos de Secuencia Molecular
16.
Nat Biotechnol ; 20(11): 1118-23, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12368813

RESUMEN

Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities, conferred in part by multicomponent, branched electron transport systems. Here we report the sequencing of the S. oneidensis genome, which consists of a 4,969,803-base pair circular chromosome with 4,758 predicted protein-encoding open reading frames (CDS) and a 161,613-base pair plasmid with 173 CDSs. We identified the first Shewanella lambda-like phage, providing a potential tool for further genome engineering. Genome analysis revealed 39 c-type cytochromes, including 32 previously unidentified in S. oneidensis, and a novel periplasmic [Fe] hydrogenase, which are integral members of the electron transport system. This genome sequence represents a critical step in the elucidation of the pathways for reduction (and bioremediation) of pollutants such as uranium (U) and chromium (Cr), and offers a starting point for defining this organism's complex electron transport systems and metal ion-reducing capabilities.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína , Shewanella/genética , Shewanella/metabolismo , Secuencia de Aminoácidos , Biodegradación Ambiental , Respiración de la Célula , Transporte de Electrón , Expresión Génica , Metales/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Compuestos Orgánicos/metabolismo , Oxidación-Reducción , Plásmidos , Proteómica/métodos , Alineación de Secuencia/métodos , Shewanella/clasificación , Shewanella/patogenicidad , Especificidad de la Especie , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos
17.
Nucleic Acids Res ; 32(8): 2386-95, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15115801

RESUMEN

The genomes of three strains of Listeria monocytogenes that have been associated with food-borne illness in the USA were subjected to whole genome comparative analysis. A total of 51, 97 and 69 strain-specific genes were identified in L.monocytogenes strains F2365 (serotype 4b, cheese isolate), F6854 (serotype 1/2a, frankfurter isolate) and H7858 (serotype 4b, meat isolate), respectively. Eighty-three genes were restricted to serotype 1/2a and 51 to serotype 4b strains. These strain- and serotype-specific genes probably contribute to observed differences in pathogenicity, and the ability of the organisms to survive and grow in their respective environmental niches. The serotype 1/2a-specific genes include an operon that encodes the rhamnose biosynthetic pathway that is associated with teichoic acid biosynthesis, as well as operons for five glycosyl transferases and an adenine-specific DNA methyltransferase. A total of 8603 and 105 050 high quality single nucleotide polymorphisms (SNPs) were found on the draft genome sequences of strain H7858 and strain F6854, respectively, when compared with strain F2365. Whole genome comparative analyses revealed that the L.monocytogenes genomes are essentially syntenic, with the majority of genomic differences consisting of phage insertions, transposable elements and SNPs.


Asunto(s)
Microbiología de Alimentos , Genoma Bacteriano , Genómica , Listeria monocytogenes/clasificación , Listeria monocytogenes/genética , Composición de Base , Cromosomas Bacterianos/genética , Elementos Transponibles de ADN/genética , Genes Bacterianos/genética , Listeria monocytogenes/metabolismo , Carne/microbiología , Sistemas de Lectura Abierta/genética , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple/genética , Profagos/genética , Serotipificación , Especificidad de la Especie , Sintenía , Virulencia/genética
18.
Stand Genomic Sci ; 10: 37, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26221418

RESUMEN

Here we report a summary classification and the features of five anaerobic oral bacteria from the family Peptostreptococcaceae. Bacterial strains were isolated from human subgingival plaque. Strains ACC19a, CM2, CM5, and OBRC8 represent the first known cultivable members of "yet uncultured" human oral taxon 081; strain AS15 belongs to "cultivable" human oral taxon 377. Based on 16S rRNA gene sequence comparisons, strains ACC19a, CM2, CM5, and OBRC8 are distantly related to Eubacterium yurii subs. yurii and Filifactor alocis, with 93.2 - 94.4 % and 85.5 % of sequence identity, respectively. The genomes of strains ACC19a, CM2, CM5, OBRC8 and AS15 are 2,541,543; 2,312,592; 2,594,242; 2,553,276; and 2,654,638 bp long. The genomes are comprised of 2277, 1973, 2325, 2277, and 2308 protein-coding genes and 54, 57, 54, 36, and 28 RNA genes, respectively. Based on the distinct characteristics presented here, we suggest that strains ACC19a, CM2, CM5, and OBRC8 represent a novel genus and species within the family Peptostreptococcaceae, for which we propose the name Peptoanaerobacter stomatis gen. nov., sp. nov. The type strain is strain ACC19a(T) (=HM-483(T); =DSM 28705(T); =ATCC BAA-2665(T)).

19.
Genome Announc ; 2(1)2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24503986

RESUMEN

Enterococcus faecium is commonly isolated from the human gastrointestinal tract; however, important intraspecies variations exist with relevance for host health and well-being. Here, we describe the draft genome sequence of E. faecium PC4.1, a clade B strain isolated from human feces.

20.
Genome Announc ; 1(1)2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23469340

RESUMEN

Enterococcus faecalis is commonly isolated from the gastrointestinal tract of healthy infants and adults, where it contributes to host health and well-being. We describe here the draft genome sequence of E. faecalis PC1.1, a candidate probiotic strain isolated from human feces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA