Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(1): 132-150, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177315

RESUMEN

Understanding cellular decisions due to receptor-ligand interactions at cell-cell interfaces has been hampered by the difficulty of independently varying the surface density of multiple different ligands. Here, we express the synthetic binder protein SpyCatcher, designed to form spontaneous covalent bonds with interactors carrying a Spytag, on the cell surface. Using this, we show that addition of different concentrations and combinations of native Spytag-fused ligands allows for the combinatorial display of ligands on cells within minutes. We use this combinatorial display of cell surface ligands-called CombiCells-to assess T cell antigen sensitivity and the impact of T cell co-stimulation and co-inhibition receptors. We find that the T cell receptor (TCR) displayed greater sensitivity to peptides on major-histocompatibility complexes (pMHC) than synthetic chimeric antigen receptor (CARs) and bi-specific T cell engager (BiTEs) display to their target antigen, CD19. While TCR sensitivity was greatly enhanced by CD2/CD58 interactions, CAR sensitivity was primarily but more modestly enhanced by LFA-1/ICAM-1 interactions. Lastly, we show that PD-1/PD-L1 engagement inhibited T cell activation triggered solely by TCR/pMHC interactions, as well as the amplified activation induced by CD2 and CD28 co-stimulation. The ability to easily produce cells with different concentrations and combinations of ligands should accelerate the study of receptor-ligand interactions at cell-cell interfaces.


Asunto(s)
Antígenos , Linfocitos T , Ligandos , Receptores de Antígenos de Linfocitos T/metabolismo , Activación de Linfocitos
2.
EMBO J ; 42(7): e111841, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484367

RESUMEN

T cells use their T-cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity foreign peptide major-histocompatibility-complexes (pMHCs) based on the TCR/pMHC off-rate. It is now appreciated that T cells generate mechanical forces during this process but how force impacts the TCR/pMHC off-rate remains debated. Here, we measured the effect of mechanical force on the off-rate of multiple TCR/pMHC interactions. Unexpectedly, we found that lower-affinity TCR/pMHCs with faster solution off-rates were more resistant to mechanical force (weak slip or catch bonds) than higher-affinity interactions (strong slip bonds). This was confirmed by molecular dynamics simulations. Consistent with these findings, we show that the best-characterized catch bond, involving the OT-I TCR, has a low affinity and an exceptionally fast solution off-rate. Our findings imply that reducing forces on the TCR/pMHC interaction improves antigen discrimination, and we suggest a role for the adhesion receptors CD2 and LFA-1 in force-shielding the TCR/pMHC interaction.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Receptores de Antígenos de Linfocitos T/metabolismo , Complejo Mayor de Histocompatibilidad , Péptidos , Simulación de Dinámica Molecular , Unión Proteica
3.
Proc Natl Acad Sci U S A ; 120(2): e2216352120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36598945

RESUMEN

Chimeric antigen receptors (CARs) can redirect T cells to target abnormal cells, but their activity is limited by a profound defect in antigen sensitivity, the source of which remains unclear. Here, we show that CARs have a > 100-fold lower antigen sensitivity compared to the T cell receptor (TCR) when antigen is presented on antigen-presenting cells (APCs) but nearly identical sensitivity when antigen is presented as purified protein. We next systematically measured the impact of engaging important T cell accessory receptors (CD2, LFA-1, CD28, CD27, and 4-1BB) on antigen sensitivity by adding their purified ligands. Unexpectedly, we found that engaging CD2 or LFA-1 improved the antigen sensitivity of the TCR by 125- and 22-fold, respectively, but improved CAR sensitivity by only < 5-fold. This differential effect of CD2 and LFA-1 engagement on the TCR vs. CAR was confirmed using APCs. We found that sensitivity to antigen can be partially restored by fusing the CAR variable domains to the TCR CD3ε subunit (also known as a TRuC) and fully restored by exchanging the TCRαß variable domains for those of the CAR (also known as STAR or HIT). Importantly, these improvements in TRuC and STAR/HIT sensitivity can be predicted by their enhanced ability to exploit CD2 and LFA-1. These findings demonstrate that the CAR sensitivity defect is a result of their inefficient exploitation of accessory receptors and suggest approaches to increase sensitivity.


Asunto(s)
Receptores Quiméricos de Antígenos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Antígeno-1 Asociado a Función de Linfocito , Activación de Linfocitos , Linfocitos T , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos CD28/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35197288

RESUMEN

Protein-protein binding domains are critical in signaling networks. Src homology 2 (SH2) domains are binding domains that interact with sequences containing phosphorylated tyrosines. A subset of SH2 domain-containing proteins has tandem domains, which are thought to enhance binding affinity and specificity. However, a trade-off exists between long-lived binding and the ability to rapidly reverse signaling, which is a critical requirement of noise-filtering mechanisms such as kinetic proofreading. Here, we use modeling to show that the unbinding rate of tandem, but not single, SH2 domains can be accelerated by phosphatases. Using surface plasmon resonance, we show that the phosphatase CD45 can accelerate the unbinding rate of zeta chain-associated protein kinase 70 (ZAP70), a tandem SH2 domain-containing kinase, from biphosphorylated peptides from the T cell receptor (TCR). An important functional prediction of accelerated unbinding is that the intracellular ZAP70-TCR half-life in T cells will not be fixed but rather, dependent on the extracellular TCR-antigen half-life, and we show that this is the case in both cell lines and primary T cells. The work highlights that tandem SH2 domains can break the trade-off between signal fidelity (requiring long half-life) and signal reversibility (requiring short half-life), which is a key requirement for T cell antigen discrimination mediated by kinetic proofreading.


Asunto(s)
Receptores de Antígenos de Linfocitos T/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo , Regulación Alostérica , Semivida , Humanos , Cinética , Fosforilación , Unión Proteica
6.
EMBO J ; 39(7): e103002, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31943278

RESUMEN

The timely activation of homologous recombination is essential for the maintenance of genome stability, in which the RAD51 recombinase plays a central role. Biochemically, human RAD51 polymerises faster on single-stranded DNA (ssDNA) compared to double-stranded DNA (dsDNA), raising a key conceptual question: how does it discriminate between them? In this study, we tackled this problem by systematically assessing RAD51 binding kinetics on ssDNA and dsDNA differing in length and flexibility using surface plasmon resonance. By directly fitting a mechanistic model to our experimental data, we demonstrate that the RAD51 polymerisation rate positively correlates with the flexibility of DNA. Once the RAD51-DNA complex is formed, however, RAD51 remains stably bound independent of DNA flexibility, but rapidly dissociates from flexible DNA when RAD51 self-association is perturbed. This model presents a new general framework suggesting that the flexibility of DNA, which may increase locally as a result of DNA damage, plays an important role in rapidly recruiting repair factors that multimerise at sites of DNA damage.


Asunto(s)
ADN/química , ADN/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Reparación del ADN , Humanos , Modelos Teóricos , Mutación Puntual , Unión Proteica , Recombinasa Rad51/genética , Dispersión del Ángulo Pequeño , Resonancia por Plasmón de Superficie , Difracción de Rayos X
7.
Clin Exp Immunol ; 215(2): 105-119, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-37930865

RESUMEN

T-cell-engaging bispecifics have great clinical potential for the treatment of cancer and infectious diseases. The binding affinity and kinetics of a bispecific molecule for both target and T-cell CD3 have substantial effects on potency and specificity, but the rules governing these relationships are not fully understood. Using immune mobilizing monoclonal TCRs against cancer (ImmTAC) molecules as a model, we explored the impact of altering affinity for target and CD3 on the potency and specificity of the redirected T-cell response. This class of bispecifics binds specific target peptides presented by human leukocyte antigen on the cell surface via an affinity-enhanced T-cell receptor and can redirect T-cell activation with an anti-CD3 effector moiety. The data reveal that combining a strong affinity TCR with an intermediate affinity anti-CD3 results in optimal T-cell activation, while strong affinity of both targeting and effector domains significantly reduces maximum cytokine release. Moreover, by optimizing the affinity of both parts of the molecule, it is possible to improve the selectivity. These results could be effectively modelled based on kinetic proofreading with limited signalling. This model explained the experimental observation that strong binding at both ends of the molecules leads to reduced activity, through very stable target-bispecific-effector complexes leading to CD3 entering a non-signalling dark state. These findings have important implications for the design of anti-CD3-based bispecifics with optimal biophysical parameters for both activity and specificity.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Humanos , Anticuerpos Biespecíficos/uso terapéutico , Receptores de Antígenos de Linfocitos T , Linfocitos T , Citocinas , Complejo CD3
8.
PLoS Comput Biol ; 18(3): e1009922, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35235558

RESUMEN

SARS-CoV-2 Spike (Spike) binds to human angiotensin-converting enzyme 2 (ACE2) and the strength of this interaction could influence parameters relating to virulence. To explore whether population variants in ACE2 influence Spike binding and hence infection, we selected 10 ACE2 variants based on affinity predictions and prevalence in gnomAD and measured their affinities and kinetics for Spike receptor binding domain through surface plasmon resonance (SPR) at 37°C. We discovered variants that reduce and enhance binding, including three ACE2 variants that strongly inhibited (p.Glu37Lys, ΔΔG = -1.33 ± 0.15 kcal mol-1 and p.Gly352Val, predicted ΔΔG = -1.17 kcal mol-1) or abolished (p.Asp355Asn) binding. We also identified two variants with distinct population distributions that enhanced affinity for Spike. ACE2 p.Ser19Pro (ΔΔG = 0.59 ± 0.08 kcal mol-1) is predominant in the gnomAD African cohort (AF = 0.003) whilst p.Lys26Arg (ΔΔG = 0.26 ± 0.09 kcal mol-1) is predominant in the Ashkenazi Jewish (AF = 0.01) and European non-Finnish (AF = 0.006) cohorts. We compared ACE2 variant affinities to published SARS-CoV-2 pseudotype infectivity data and confirmed that ACE2 variants with reduced affinity for Spike can protect cells from infection. The effect of variants with enhanced Spike affinity remains unclear, but we propose a mechanism whereby these alleles could cause greater viral spreading across tissues and cell types, as is consistent with emerging understanding regarding the interplay between receptor affinity and cell-surface abundance. Finally, we compared mCSM-PPI2 ΔΔG predictions against our SPR data to assess the utility of predictions in this system. We found that predictions of decreased binding were well-correlated with experiment and could be improved by calibration, but disappointingly, predictions of highly enhanced binding were unreliable. Recalibrated predictions for all possible ACE2 missense variants at the Spike interface were calculated and used to estimate the overall burden of ACE2 variants on Covid-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Mutación Missense , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Unión Proteica
9.
Biophys J ; 121(21): 4128-4136, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181267

RESUMEN

T cells are immune cells that continuously scan for foreign-derived antigens on the surfaces of nearly all cells, termed antigen-presenting cells (APCs). They do this by dynamically extending numerous protrusions called microvilli (MVs) that contain T cell receptors toward the APC surface in order to scan for antigens. The number, size, and dynamics of these MVs, and the complex multiscale topography that results, play a yet unknown role in antigen recognition. We develop an anatomically informed model that confines antigen recognition to small areas representing MVs that can dynamically form and dissolve and use the model to study how MV dynamics impact antigen sensitivity and discrimination. We find that MV surveillance reduces antigen sensitivity compared with a completely flat interface, unless MV are stabilized in an antigen-dependent manner, and observe that MVs have only a modest impact on antigen discrimination. The model highlights that MV contacts optimize the competing demands of fast scanning speeds of the APC surface with antigen sensitivity. Our model predicts an interface packing fraction that corresponds closely to those observed experimentally, indicating that T cells operate their MVs near the limits imposed by anatomical and geometric constraints. Finally, we find that observed MV contact lifetimes can be largely influenced by conditions in the T cell/APC interface, with these lifetimes often being longer than the simulation or experimental observation period. This work highlights the role of MVs in antigen recognition.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Linfocitos T/metabolismo , Microvellosidades/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Células Presentadoras de Antígenos/metabolismo
10.
Mol Syst Biol ; 17(11): e10560, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34806839

RESUMEN

T-cell responses to infections and cancers are regulated by co-signalling receptors grouped into the binary categories of co-stimulation or co-inhibition. The co-stimulation TNF receptor superfamily (TNFRSF) members 4-1BB, CD27, GITR and OX40 have similar signalling mechanisms raising the question of whether they have similar impacts on T-cell responses. Here, we screened for the quantitative impact of these TNFRSFs on primary human CD8+ T-cell cytokine production. Although both 4-1BB and CD27 increased production, only 4-1BB was able to prolong the duration over which cytokine was produced, and both had only modest effects on antigen sensitivity. An operational model explained these different phenotypes using shared signalling based on the surface expression of 4-1BB being regulated through signalling feedback. The model predicted and experiments confirmed that CD27 co-stimulation increases 4-1BB expression and subsequent 4-1BB co-stimulation. GITR and OX40 displayed only minor effects on their own but, like 4-1BB, CD27 could enhance GITR expression and subsequent GITR co-stimulation. Thus, different co-stimulation receptors can have different quantitative effects allowing for synergy and fine-tuning of T-cell responses.


Asunto(s)
Linfocitos T CD8-positivos , Activación de Linfocitos , Humanos , Receptores del Factor de Necrosis Tumoral/genética
11.
J Immunol ; 205(6): 1503-1512, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32817332

RESUMEN

T cells recognizing cognate pMHC Ags become activated to elicit a myriad of cellular responses, such as target cell killing and the secretion of different cytokines, that collectively contribute to adaptive immunity. These effector responses have been hypothesized to exhibit different Ag dose and affinity thresholds, suggesting that pathogen-specific information may be encoded within the nature of the Ag. In this study, using systematic experiments in a reductionist system, in which primary human CD8+ T cell blasts are stimulated by recombinant peptides presented on MHC Ag alone, we show that different inflammatory cytokines have comparable Ag dose thresholds across a 25,000-fold variation in affinity. Although costimulation by CD28, CD2, and CD27 increased cytokine production in this system, the Ag threshold remained comparable across different cytokines. When using primary human memory CD8+ T cells responding to autologous APCs, equivalent thresholds were also observed for different cytokines and killing. These findings imply a simple phenotypic model of TCR signaling in which multiple T cell responses share a common rate-limiting threshold and a conceptually simple model of CD8+ T cell Ag recognition, in which Ag dose and affinity do not provide any additional response-specific information.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Modelos Inmunológicos , Receptores de Antígenos de Linfocitos T/metabolismo , Presentación de Antígeno , Antígenos/inmunología , Antígenos/metabolismo , Antígenos CD28/metabolismo , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Citotoxicidad Inmunológica , Epítopos de Linfocito T/inmunología , Antígenos HLA/inmunología , Antígenos HLA/metabolismo , Humanos , Memoria Inmunológica , Activación de Linfocitos , Péptidos/inmunología , Péptidos/metabolismo , Unión Proteica , Transducción de Señal
12.
Proc Natl Acad Sci U S A ; 116(34): 16943-16948, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31315981

RESUMEN

The T cell receptor (TCR)-peptide-MHC (pMHC) interaction is the only antigen-specific interaction during T lymphocyte activation. Recent work suggests that formation of catch bonds is characteristic of activating TCR-pMHC interactions. However, whether this binding behavior is an intrinsic feature of the molecular bond, or a consequence of more complex multimolecular or cellular responses, remains unclear. We used a laminar flow chamber to measure, first, 2D TCR-pMHC dissociation kinetics of peptides of various activating potency in a cell-free system in the force range (6 to 15 pN) previously associated with catch-slip transitions and, second, 2D TCR-pMHC association kinetics, for which the method is well suited. We did not observe catch bonds in dissociation, and the off-rate measured in the 6- to 15-pN range correlated well with activation potency, suggesting that formation of catch bonds is not an intrinsic feature of the TCR-pMHC interaction. The association kinetics were better explained by a model with a minimal encounter duration rather than a standard on-rate constant, suggesting that membrane fluidity and dynamics may strongly influence bond formation.


Asunto(s)
Antígeno HLA-A2/química , Modelos Químicos , Receptores de Antígenos de Linfocitos T/química , Sistema Libre de Células , Antígeno HLA-A2/genética , Antígeno HLA-A2/inmunología , Humanos , Cinética , Unión Proteica , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología
13.
Proc Natl Acad Sci U S A ; 116(28): 14002-14010, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221762

RESUMEN

The T cell receptor (TCR) initiates the elimination of pathogens and tumors by T cells. To avoid damage to the host, the receptor must be capable of discriminating between wild-type and mutated self and nonself peptide ligands presented by host cells. Exactly how the TCR does this is unknown. In resting T cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over the kinases expressed at the cell surface. However, when agonist peptides are presented to the TCR by major histocompatibility complex proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering, i.e., TCR phosphorylation, occurs. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we developed and tested a quantitative treatment of receptor triggering reliant only on TCR dwell time in phosphatase-depleted cell contacts constrained in area by cell topography. Using the model and experimentally derived parameters, we found that ligand discrimination likely depends crucially on individual contacts being ∼200 nm in radius, matching the dimensions of the surface protrusions used by T cells to interrogate their targets. The model not only correctly predicted the relative signaling potencies of known agonists and nonagonists but also achieved this in the absence of kinetic proofreading. Our work provides a simple, quantitative, and predictive molecular framework for understanding why TCR triggering is so selective and fast and reveals that, for some receptors, cell topography likely influences signaling outcomes.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Receptores de Antígenos de Linfocitos T/química , Animales , Humanos , Cinética , Ligandos , Activación de Linfocitos/genética , Complejo Mayor de Histocompatibilidad/inmunología , Microvellosidades/genética , Microvellosidades/inmunología , Modelos Teóricos , Péptidos/química , Péptidos/inmunología , Fosforilación/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Imagen Individual de Molécula , Linfocitos T/química , Linfocitos T/inmunología
14.
Immunol Rev ; 285(1): 194-205, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30129204

RESUMEN

T cells initiate and regulate adaptive immune responses that can clear infections. To do this, they use their T cell receptors (TCRs) to continually scan the surfaces of other cells for cognate peptide antigens presented on major histocompatibility complexes (pMHCs). Experimental work has established that as few 1-10 pMHCs are sufficient to activate T cells. This sensitivity is remarkable in light of a number of factors, including the observation that the TCR and pMHC are short molecules relative to highly abundant long surface molecules, such as CD45, that can hinder initial binding, and moreover, the TCR/pMHC interaction is of weak affinity with solution lifetimes of approximately 1 second. Here, we review experimental and mathematical work that has contributed to uncovering molecular mechanisms of T cell sensitivity. We organize the mechanisms by where they act in the pathway to activate T cells, namely mechanisms that (a) promote TCR/pMHC binding, (b) induce rapid TCR signaling, and (c) amplify TCR signaling. We discuss work showing that high sensitivity reduces antigen specificity unless molecular feedbacks are invoked. We conclude by summarizing a number of open questions.


Asunto(s)
Sinapsis Inmunológicas/metabolismo , Modelos Inmunológicos , Linfocitos T/inmunología , Animales , Presentación de Antígeno , Antígenos de Histocompatibilidad/metabolismo , Humanos , Activación de Linfocitos , Modelos Teóricos , Unión Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
15.
Biophys J ; 120(2): 379-392, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33285117

RESUMEN

Many immunoreceptors have cytoplasmic domains that are intrinsically disordered (i.e., have high configurational entropy), have multiple sites of posttranslational modification (e.g., tyrosine phosphorylation), and participate in nonlinear signaling pathways (e.g., exhibiting switch-like behavior). Several hypotheses to explain the origin of these nonlinearities fall under the broad hypothesis that modification at one site changes the immunoreceptor's entropy, which in turn changes further modification dynamics. Here, we use coarse-grain simulation to study three scenarios, all related to the chains that constitute the T cell receptor (TCR). We find that first, if phosphorylation induces local changes in the flexibility of the TCR ζ-chain, this naturally leads to rate enhancements and cooperativity. Second, we find that TCR CD3ɛ can provide a switch by modulating its residence in the plasma membrane. By constraining our model to be consistent with the previous observation that both basic residues and phosphorylation control membrane residence, we find that there is only a moderate rate enhancement of 10% between first and subsequent phosphorylation events. Third, we find that volume constraints do not limit the number of ZAP70s that can bind the TCR but that entropic penalties lead to a 200-fold decrease in binding rate by the seventh ZAP70, potentially explaining the observation that each TCR has around six ZAP70 molecules bound after receptor triggering. In all three scenarios, our results demonstrate that phenomena that change an immunoreceptor chain's entropy (stiffening, confinement to a membrane, and multiple simultaneous binding) can lead to nonlinearities (rate enhancement, switching, and negative cooperativity) in how the receptor participates in signaling. These polymer-entropy-driven nonlinearities may augment the nonlinearities that arise from, e.g., kinetic proofreading and cluster formation. They also suggest different design strategies for engineered receptors, e.g., whether or not to put signaling modules on one chain or multiple clustered chains.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Transducción de Señal , Proteína Tirosina Quinasa ZAP-70 , Membrana Celular/metabolismo , Proteínas Intrínsecamente Desordenadas , Cinética , Fosforilación , Receptores de Antígenos de Linfocitos T/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo
16.
Biophys J ; 120(10): 2054-2066, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33781765

RESUMEN

Immune receptors signal by recruiting (or tethering) enzymes to their cytoplasmic tails to catalyze reactions on substrates within reach. This is the case for the phosphatase SHP-1, which, upon tethering to inhibitory receptors, dephosphorylates diverse substrates to control T cell activation. Precisely how tethering regulates SHP-1 activity is incompletely understood. Here, we measure binding, catalysis, and molecular reach for tethered SHP-1 reactions. We determine the molecular reach of SHP-1 to be 13.0 nm, which is longer than the estimate from the allosterically active structure (5.3 nm), suggesting that SHP-1 can achieve a longer reach by exploring multiple active conformations. Using modeling, we show that when uniformly distributed, receptor-SHP-1 complexes can only reach 15% of substrates, but this increases to 90% when they are coclustered. When within reach, we show that membrane recruitment increases the activity of SHP-1 by a 1000-fold increase in local concentration. The work highlights how molecular reach regulates the activity of membrane-recruited SHP-1 with insights applicable to other membrane-tethered reactions.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Tirosina , Fosforilación , Proteína Fosfatasa 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Tirosina Fosfatasas con Dominio SH2 , Tirosina/metabolismo
17.
PLoS Comput Biol ; 15(9): e1007338, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31498801

RESUMEN

T cells use their T-cell receptors (TCRs) to scan other cells for antigenic peptides presented by MHC molecules (pMHC). If a TCR encounters a pMHC, it can trigger a signalling pathway that could lead to the activation of the T cell and the initiation of an immune response. It is currently not clear how the binding of pMHC to the TCR initiates signalling within the T cell. One hypothesis is that conformational changes in the TCR lead to further downstream signalling. Here we investigate four different TCRs in their free state as well as in their pMHC bound state using large scale molecular simulations totalling 26 000 ns. We find that the dynamical features within TCRs differ significantly between unbound TCR and TCR/pMHC simulations. However, apart from expected results such as reduced solvent accessibility and flexibility of the interface residues, these features are not conserved among different TCR types. The presence of a pMHC alone is not sufficient to cause cross-TCR-conserved dynamical features within a TCR. Our results argue against models of TCR triggering involving conserved allosteric conformational changes.


Asunto(s)
Antígenos de Histocompatibilidad , Receptores de Antígenos de Linfocitos T , Biología Computacional , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/metabolismo , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
18.
J Immunol ; 200(3): 1088-1100, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29288199

RESUMEN

Adoptive T cell therapies have achieved significant clinical responses, especially in hematopoietic cancers. Two types of receptor systems have been used to redirect the activity of T cells, normal heterodimeric TCRs or synthetic chimeric Ag receptors (CARs). TCRs recognize peptide-HLA complexes whereas CARs typically use an Ab-derived single-chain fragments variable that recognizes cancer-associated cell-surface Ags. Although both receptors mediate diverse effector functions, a quantitative comparison of the sensitivity and signaling capacity of TCRs and CARs has been limited due to their differences in affinities and ligands. In this study we describe their direct comparison by using TCRs that could be formatted either as conventional αß heterodimers, or as single-chain fragments variable constructs linked to CD3ζ and CD28 signaling domains or to CD3ζ alone. Two high-affinity TCRs (KD values of ∼50 and 250 nM) against MART1/HLA-A2 or WT1/HLA-A2 were used, allowing MART1 or WT1 peptide titrations to easily assess the impact of Ag density. Although CARs were expressed at higher surface levels than TCRs, they were 10-100-fold less sensitive, even in the absence of the CD8 coreceptor. Mathematical modeling demonstrated that lower CAR sensitivity could be attributed to less efficient signaling kinetics. Furthermore, reduced cytokine secretion observed at high Ag density for both TCRs and CARs suggested a role for negative regulators in both systems. Interestingly, at high Ag density, CARs also mediated greater maximal release of some cytokines, such as IL-2 and IL-6. These results have implications for the next-generation design of receptors used in adoptive T cell therapies.


Asunto(s)
Afinidad de Anticuerpos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Antígeno MART-1/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas WT1/inmunología , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Antígenos HLA/inmunología , Humanos , Activación de Linfocitos/inmunología , Proteínas Mutantes Quiméricas/inmunología
19.
Biophys J ; 117(7): 1189-1201, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31543263

RESUMEN

Signaling by surface receptors often relies on tethered reactions whereby an enzyme bound to the cytoplasmic tail of a receptor catalyzes reactions on substrates within reach. The overall length and stiffness of the receptor tail, the enzyme, and the substrate determine a biophysical parameter termed the molecular reach of the reaction. This parameter determines the probability that the receptor-tethered enzyme will contact the substrate in the volume proximal to the membrane when separated by different distances within the membrane plane. In this work, we develop particle-based stochastic reaction-diffusion models to study the interplay between molecular reach and diffusion. We find that increasing the molecular reach can increase reaction efficacy for slowly diffusing receptors, whereas for rapidly diffusing receptors, increasing molecular reach reduces reaction efficacy. In contrast, if reactions are forced to take place within the two-dimensional plasma membrane instead of the three-dimensional volume proximal to it or if molecules diffuse in three dimensions, increasing molecular reach increases reaction efficacy for all diffusivities. We show results in the context of immune checkpoint receptors (PD-1 dephosphorylating CD28), a standard opposing kinase-phosphatase reaction, and a minimal two-particle model. The work highlights the importance of the three-dimensional nature of many two-dimensional membrane-confined interactions, illustrating a role for molecular reach in controlling biochemical reactions.


Asunto(s)
Membrana Celular/química , Antígenos CD28/metabolismo , Difusión , Modelos Biológicos , Fenotipo , Fosforilación , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal
20.
EMBO J ; 34(3): 393-409, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25535246

RESUMEN

THEMIS is critical for conventional T-cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr-phosphorylation-independent fashion. Rather, SHP1 and THEMIS engage with the N-SH3 and C-SH3 domains of GRB2, respectively, a configuration that allows GRB2-SH2 to recruit the complex onto LAT. Consistent with THEMIS-mediated recruitment of SHP to the TCR signalosome, THEMIS knock-down increased TCR-induced CD3-ζ phosphorylation, Erk activation and CD69 expression, but not LCK phosphorylation. This generalized TCR signalling increase led to augmented apoptosis, a phenotype mirrored by SHP1 knock-down. Remarkably, a KI mutation of LCK Ser59, previously suggested to be key in ERK-mediated resistance towards SHP1 negative feedback, did not affect TCR signalling nor ligand discrimination in vivo. Thus, the THEMIS:SHP complex dampens early TCR signalling by a previously unknown molecular mechanism that favours T-cell survival. We discuss possible implications of this mechanism in modulating TCR output signals towards conventional T-cell development and differentiation.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Animales , Complejo CD3/genética , Complejo CD3/metabolismo , Diferenciación Celular/genética , Supervivencia Celular/genética , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular/genética , Células Jurkat , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Mutación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteínas/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/citología , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA