Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Microb Pathog ; 185: 106446, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37951409

RESUMEN

Biodegradable calcium phosphate nanoparticles offer a viable substitute for traditional adjuvants such as aluminum in vaccine production. Calcium phosphate nanoparticle adjuvanted with outer membrane vesicle (OMV) of gram negative bacteria may induce efficient immune response in the host. The present study was carried out to evaluate the potential of a mucosal vaccine formulation of calcium phosphate (CAP) nanoparticle using OMV of Riemerella anatipestifer (RA) as antigen against New Duck disease in ducks. The work was initiated with isolation, identification of RA, followed by OMV production and extraction. The CAP-OMV nanoparticle was prepared and characterized. The efficacy of the vaccine formulation and toxicity were studied in ducks. The average OMV yield in terms of protein concentration was found to be 122.33 ± 3.48 mg per liter of BHI broth. In SDS-PAGE, isolated OMVs exhibited presence of 16 distinct protein bands with molecular weight ranging from 142.1 to 12.1 kDa. Seven protein bands of 74.1, 69.3, 55.5, 50.6, 45.6, 25.1 and 13.1 kDa were detected relatively more distinct. The major bands detected in our findings were 42 kDa, 37 kDa and 16 kDa that corresponds to OmpA, OmpH, P6 respectively. The mean zeta size (±SD) and potential of the nanoparticle were 246.20 ± 0.53 nm and -25.60 ± 5.97 respectively. In transmission electron microscopy (TEM), the nanoparticles exhibited an average diameter of 129.80 ± 11.10 nm and displayed spherical morphology. The median protective dose (PD50) of CAP-OMV nanoparticle was 1881.10 µg of protein. Group I ducks received 3762 µg of protein (entrapped protein in CAP-OMV nanoparticle) via intra nasal route and it showed the highest serum IgG and secretory IgA level than other immunized groups. All experimental ducks were challenged with 10 × LD50 on 35 days of post primary immunization. Group I showed 100 % survivability in the challenge study. No gross and biochemical indication of acute or chronic toxicity were recorded. In conclusion, our results suggest that CAP-OMV nanoparticle can be a safe and efficient mucosal vaccine delivery system for RA, eliciting strong immune response in the host.


Asunto(s)
Infecciones por Flavobacteriaceae , Enfermedades de las Aves de Corral , Riemerella , Animales , Patos/microbiología , Enfermedades de las Aves de Corral/microbiología , Infecciones por Flavobacteriaceae/prevención & control , Infecciones por Flavobacteriaceae/veterinaria , Adyuvantes Inmunológicos , Desarrollo de Vacunas , Vacunas Bacterianas , Fosfatos de Calcio
2.
Anal Chem ; 91(7): 4337-4345, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30821145

RESUMEN

We have elucidated the role of unsaturated fatty acid in the in vitro model phospholipid membrane and in vivo live cell membrane. Fluorescence microscopy and time-resolved fluorescence spectroscopy have been employed to uncover how modulation of vesicle bilayer fluidity persuades structural transformation. This unsaturation induced structural transformation due to packing disorder in bilayer has been delineated through spatially resolved fluorescence lifetime imaging microscopy (FLIM) and fluorescence polarization or anisotropy imaging microscopy (FPIM/FAIM). Structure-function relationship of phospholipid vesicle is also investigated by monitoring intervesicular water dynamics behavior, which has been demonstrated by temporally resolved fluorescence spectroscopy (TRFS) techniques. Nevertheless, it has also been manifested from this study that loss of rigidity in bilayer breaks down the strong hydrogen bond (H-bond) network around the charged lipid head groups. The disruption of this H-bond network increases the bilayer elasticity, which helps to evolve various kinds of vesicular structure. Furthermore, the significant influence of unsaturated fatty acid on membrane bilayer has been ratified through in vivo live cell imaging.


Asunto(s)
Membrana Celular/metabolismo , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Fluidez de la Membrana/efectos de los fármacos , Línea Celular , Membrana Celular/química , Ácidos Grasos Insaturados/química , Colorantes Fluorescentes/química , Humanos , Enlace de Hidrógeno , Membrana Dobles de Lípidos/química , Liposomas/química , Microscopía Fluorescente/métodos , Rodaminas/química , Agua/química
3.
Photochem Photobiol Sci ; 18(6): 1359-1372, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-30916109

RESUMEN

Literature reports provide ample evidence of the dynamical studies of various fluorophores in different room-temperature ionic liquid (RTIL)-cosolvent mixtures. However, most of the experimental and simulation studies reveal that ∼50% of the spectral relaxation dynamics is fast and cannot be resolved using traditional time correlated single photon counting (TCSPC) measurements. Our group has also investigated the dynamics of a solvatochromic probe coumarin 153 (C153) in a RTIL-cosolvent mixture using a TCSPC setup (S. Sarkar, R. Pramanik, C. Ghatak, P. Setua and N. Sarkar, J. Phys. Chem. B, 2010, 114, 2779-2789). Consequently, a major portion of the solvation dynamics remained undetected and moreover we could not monitor the dynamics beyond 0.4 mole fraction of the cosolvents. Thus in this study, we have rekindled our interest to sufficiently capture the rotational anisotropy and solvation dynamics of C153 beyond 0.4 mole fraction of the cosolvents in the RTIL-cosolvent mixture employing femtosecond fluorescence upconversion measurements. Additionally, we have utilized another RTIL with a higher alkyl chain length and viscosity to obtain a comprehensive and quantitative picture of the role of viscosity on the dynamics of the probe molecule. The most interesting observation of the present work is that the viscosities of different RTIL-cosolvent mixtures can efficiently control the cis-trans isomerization kinetics of the anionic fluorophore merocyanine 540 (MC 540) and the translational diffusion of a hydrophobic probe. The optimization of geometrical structures of [EmimOs]- and [EmimOs]-cosolvent mixtures followed by frequency analyses in both gas and solution phases have been carried out using quantum chemical calculations with the aid of density functional theory (DFT) methods. The computation based on the bond distances, electron densities and non-covalent interactions (NCI) has also been used to investigate the existence of the hydrogen-bond (H-bond). Again to comprehend van der Waals interactions and the conventional hydrogen-bond, the evolution of NCI plots are simulated. Therefore, the detailed experimental and theoretical studies presented in this manuscript lead to the inference that addition of the conventional solvents finely tunes the physicochemical properties of RTILs and broadens their scope of applications in the fields of chemistry and biology.

4.
Langmuir ; 33(38): 9811-9821, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28849933

RESUMEN

In this article, anionic lipophilic dye merocyanine 540(MC540) and cationic surface-active ionic liquid (SAIL) 1-octyl-3-methylimidazolium chloride (C8mimCl) are employed to construct highly ordered fibrillar and vesicular aggregates exploiting an ionic self-assembly (ISA) strategy. It is noteworthy that the concentration of the counterions has exquisite control over the morphology, in which lowering the concentration of both the building blocks in a stoichiometric ratio of 1:1 provides a vesicle to fibril transition. Here, we have reported the concentration-controlled fibril-vesicle transition utilizing the emerging fluorescence lifetime imaging microscopy (FLIM) technique. Furthermore, we have detected this morphological transformation by means of other microscopic techniques such as field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and cryogenic-transmission electron microscopy (cryo-TEM) to gain additional support. Besides, multiwavelength FLIM (MW-FLIM) and atomic force microscopy (AFM) techniques assist us in knowing the microheterogeneity and the height profile of the vesicles, respectively. We have replaced the SAIL, C8mimCl, by an analogous traditional surfactant, n-octyltrimethylammonium bromide (OTAB), and it provides a discernible change in morphology similar to that of C8mimCl, whereas 1-octanol is unable to exhibit any structural aggregation and thus reveals the importance of electrostatic interaction in supramolecular aggregate formation. However, the SAILs having the same imidazolium headgroup with different chain lengths other than C8mimCl are unable to display any structural transition and determine the importance of the correct chain length for efficient packing of the counterions to form a specific self-assembly. Therefore, this study reveals the synergistic interplay of electrostatic, hydrophobic, and π-π stacking interactions to construct the self-assembly and their concentration-dependent morphological transition.

5.
Langmuir ; 32(42): 10946-10956, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27690468

RESUMEN

This article demonstrates the interaction of a deoxyribonucleic acid (DNA) nucleotide, adenosine-5'-monophosphate disodium (AMP) with a cationic surface active ionic liquid (SAIL) 1-dodecyl-3-methylimidazoium chloride (C12mimCl), and an anionic SAIL, 1-butyl-3-methylimidazolium n-octylsulfate ([C4mim][C8SO4]). Dynamic light scattering (DLS) measurements and 1H NMR (nuclear magnetic resonance) studies indicate that substantial interaction is taking place among the DNA nucleotide (AMP) and the SAILs. Moreover, cryogenic transmission electron microscopy (cryo-TEM) suggests that SAILs containing micellar assemblies are transformed into larger micellar assemblies in the presence of DNA nucleotides. Additionally, the rotational motion of two oppositely charged molecules, rhodamine 6G perchlorate (R6G) and fluorescein sodium salt (Fl-Na), have been monitored in these aggregates. The rotational motion of R6G and Fl-Na differs significantly between SAILs micelles and SAILs-AMP containing larger micellar aggregates. The effect of negatively charged DNA nucleotide (AMP) addition into the cationic and anionic SAILs is more prominent for the cationic charged molecule R6G than that of anionic probe Fl-Na due to the favorable electrostatic interaction between the AMP and cationic R6G. Moreover, the influence of the anionic DNA nucleotide on the cationic and anionic SAIL micelles is monitored through the variation of the lateral diffusion motion of oppositely charged probe molecules (R6G and Fl-Na) inside these aggregates. This variation in diffusion coefficient values also suggests that the interaction pattern of these oppositely charged probes are different within the SAILs-nucleotide containing aggregates. Therefore, both rotational and translational diffusion measurements confirm that the DNA nucleotide (AMP) renders more rigid microenvironment within the micellar solution of SAILs.

6.
Langmuir ; 32(28): 7127-37, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27345738

RESUMEN

This article describes the formation of stable unilamellar vesicles involving surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium chloride (C16mimCl), and 5-methyl salicylic acid (5mS). Turbidity, dynamic light scattering (DLS), transmission electron microscopy (TEM), and viscosity measurements suggest that C16mimCl containing micellar aggregates are transformed to elongated micelle and finally into vesicular aggregates with the addition of 5mS. Besides, we have also investigated the photophysical aspects of a hydrophobic (coumarin 153, C153) and a hydrophilic molecule (rhodamine 6G (R6G) perchlorate) during 5mS-induced micelle to vesicle transition. The rotational motion of C153 becomes slower, whereas faster motion is observed for R6G during micelle to vesicle transition. Moreover, the fluorescence correlation spectroscopy (FCS) measurements suggest that the translational diffusion of hydrophobic probe becomes slower in C16mimCl-5mS aggregates in comparison to C16mimCl micelle. However, a reverse trend in translational diffusion motion of hydrophilic molecule has been observed in C16mimCl-5mS aggregates. Moreover, we have also found that the C16mimCl-5mS containing vesicles are transformed into micelles upon enhanced temperature, and it is further confirmed by turbidity, DLS measurements that this transition is a reversible one. Finally, temperature-induced rotational motion of C153 and R6G has been monitored in C16mimCl-5mS aggregates to get a complete scenario regarding the temperature-induced vesicle to micelle transition.

7.
Langmuir ; 32(20): 5124-34, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27133799

RESUMEN

It is well-known that sugars protect membrane structures against fusion and leakage. Here, we have investigated the interaction between different sugars (sucrose, trehalose, and maltose) and phospholipid membrane of 1,2-dimyristoyl-sn-glycero-3-phoshpocholine (DMPC) using dynamic light scattering (DLS), transmission electron microscopy (TEM), and other various spectroscopic techniques. DLS measurement reveals that the addition of sugar molecule results a significant increase of the average diameter of DMPC membrane. We have also noticed that in the presence of different sugars the rotational relaxation and solvation time of coumarin 480 (C480) and coumarin 153 (C153) surrounding DMPC membrane increases, suggesting a marked reduction of the hydration behavior at the surface of phospholipid membrane. In addition, we have also investigated the effect of sugar molecules on the lateral mobility of phospholipids. Interestingly, the relative increase in rotational, solvation and lateral diffusion is more prominent for C480 than that of C153 because of their different location in lipid bilayer. It is because of preferential location of comparatively hydrophilic probe C480 in the interfacial region of the lipid bilayer. Sugars intercalate with the phospholipid headgroup through hydrogen bonding and replace smaller sized water molecules from the membrane surface. Therefore, overall, we have monitored a comparative analysis regarding the interaction of different sugar molecules (sucrose, trehalose, and maltose) with the DMPC membrane through DLS, TEM, solvation dynamics, time-resolved anisotropy, and fluorescence correlation spectroscopy (FCS) measurements to explore the structural and spectroscopic aspect of lipid-sugar interaction.

8.
Langmuir ; 32(49): 13284-13295, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27951700

RESUMEN

Fatty acids are known to form different supramolecular aggregates in aqueous solutions depending on the pH of the medium. The dynamics of the transformation of oleate micelles into oleic acid/oleate vesicles has been investigated using a pH-sensitive intramolecular proton transfer fluorophore, 2,2'-bipyridine-3,3'-diol [BP(OH)2]. Different prototropic forms of BP(OH)2 exist in different pH values of the system, and thus, the ground state and the excited state dynamics of BP(OH)2 have been modulated in these confined media. The formation of different tautomeric forms of BP(OH)2 in oleate micelles (at basic pH) is confirmed using time-resolved emission spectra and fluorescence anisotropy measurements. The hydrophobic environment provided by these assemblies reduces the water-assisted nonradiative decay channels and lengthens the fluorescence lifetime of BP(OH)2. The rotational relaxation time in the micellar assembly is higher than that in the vesicle, which may be due to the higher microviscosity sensed by the fluorophore in the micelle. Besides, we have shown for the first time that BP(OH)2 can be used as a membrane-bound fluorophore, using fluorescence lifetime imaging microscopy (FLIM). A broad distribution in the size of the vesicle is observed from the FLIM image. Further, we have used multiwavelength FLIM to collect the FLIM images of a single vesicle at different emission wavelengths, and the lifetime distribution obtained from the FLIM images at different emission wavelengths in a single vesicle correlates well with the lifetime values obtained from the ensemble average measurements in the bulk solution.

9.
Mol Biol Rep ; 41(6): 3677-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24535267

RESUMEN

Assam hill goat (Capra hircus) is a prolific local goat in India. bone morphogenetic protein receptor (BMPR1B) gene was studied as a candidate gene for the prolificacy of goats. The objective of the present study was to detect the incidence of mutation in the exonic region of BMPR1B gene of Assam hill goat. Total 90 blood samples were collected randomly from different parts of Assam and genomic DNA were extracted using phenol-chloroform method. The quantity and quality of extracted DNA was examined by spectrophotometry and gel electrophoresis, respectively. PCR amplicon showed a product of 140 bp fragment of BMPR1B gene. The purified product upon digestion with AvaII showed monomorphic banding pattern and revealed wild type alleles with AA genotype. Nucleotide sequencing showed one new mutation 773 (G→C) which is found to be unique in Assam hill goat. Construction of tree at nucleotide level generates from the present experiment lies in common cluster which differs from the other breeds of goat. The analysis of polymorphism for BMPR1B in Assam hill goat indicates that the genetic factor responsible for prolificacy or multiple kidding rates is not related to the reported mutated alleles of BMPR1B gene. Therefore, attempts to be made to detect other SNPs for BMPR1B gene or otherwise effort should be made towards other fecundity gene which might be responsible for the prolificacy of Assam hill goat.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Fertilidad/genética , Cabras/genética , Animales , Secuencia de Bases , Genotipo , India , Tamaño de la Camada/genética , Mutación , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
10.
Braz J Microbiol ; 54(4): 3257-3264, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792270

RESUMEN

Salmonella Typhimurium is the most prevalent non-host specific Salmonella serovars and a major concern for both human and animal health systems worldwide contributing to significant economic loss. Type 3 secretion system (T3SS) of Salmonella plays an important role in bacterial adherence and entry into the host epithelial cells. The product of invH gene of Salmonella is an important component of the needle complex of the type 3 secretion system. Hence, the present study was undertaken to clone and express the 15 kDa InvH surface protein of Salmonella Typhimurium in an E. coli host and to evaluate its immune potency in mice. The purified recombinant InvH (r-InvH) protein provoked a significant (p < 0.01) rise in IgG in the inoculated mice. The immunized mice were completely (100%) protected against the challenge dose of 107.5 LD50, while protection against challenge with the same dose of heterologous serovars was 90%. The bacterin-vaccinated group showed homologous protection of 60% against all three serovars. Findings in this study suggest the potential of the r-InvH protein of S. Typhimurium as an effective vaccine candidate against Salmonella infections.


Asunto(s)
Intoxicación Alimentaria por Salmonella , Salmonelosis Animal , Infecciones por Salmonella , Animales , Ratones , Humanos , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Escherichia coli/genética , Proteínas Bacterianas/metabolismo , Infecciones por Salmonella/prevención & control , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacunas de Subunidad/genética , Vacunas de Subunidad/metabolismo , Salmonelosis Animal/microbiología , Vacunas Atenuadas
11.
Front Cell Infect Microbiol ; 13: 1067993, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926515

RESUMEN

Introduction: Highly pathogenic avian influenza (HPAI) viruses, such as H5N1, continue to pose a serious threat to animal agriculture, wildlife and to public health. Controlling and mitigating this disease in domestic birds requires a better understanding of what makes some species highly susceptible (such as turkey and chicken) while others are highly resistant (such as pigeon and goose). Susceptibility to H5N1 varies both with species and strain; for example, species that are tolerant of most H5N1 strains, such as crows and ducks, have shown high mortality to emerging strains in recent years. Therefore, in this study we aimed to examine and compare the response of these six species, to low pathogenic avian influenza (H9N2) and two strains of H5N1 with differing virulence (clade 2.2 and clade 2.3.2.1) to determine how susceptible and tolerant species respond to HPAI challenge. Methods: Birds were challenged in infection trials and samples (brain, ileum and lung) were collected at three time points post infection. The transcriptomic response of birds was examined using a comparative approach, revealing several important discoveries. Results: We found that susceptible birds had high viral loads and strong neuro-inflammatory response in the brain, which may explain the neurological symptoms and high mortality rates exhibited following H5N1 infection. We discovered differential regulation of genes associated with nerve function in the lung and ileum, with stronger differential regulation in resistant species. This has intriguing implications for the transmission of the virus to the central nervous system (CNS) and may also indicate neuro-immune involvement at the mucosal surfaces. Additionally, we identified delayed timing of the immune response in ducks and crows following infection with the more deadly H5N1 strain, which may account for the higher mortality in these species caused by this strain. Lastly, we identified candidate genes with potential roles in susceptibility/resistance which provide excellent targets for future research. Discussion: This study has helped elucidate the responses underlying susceptibility to H5N1 influenza in avian species, which will be critical in developing sustainable strategies for future control of HPAI in domestic poultry.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Patos , Pollos
14.
Vet Res Commun ; 46(3): 799-810, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35167002

RESUMEN

We investigated the prevalence, antimicrobial susceptibility, antimicrobial resistance and virulence genes of Salmonella isolates recovered from humans and different species of animals. Out of 1231 samples, 88 (7.15%) Salmonella isolates were obtained, among which 21 (23.86%) belonged to Salmonella enterica subsp. enterica sero var. Weltevreden, 22 (25%) to S. Enteritidis, 16 (18.2%) to S. Typhi and 14 (15.9%) to S. Newport; 7 (7.95%) isolates were untypable. Among the 88 isolates, 65.90% showed resistance to gentamicin, 61.36% to tetracycline, 61.18% to cefotaxime, 48.86% to trimethoprim, 45.45% to ampicillin, 11.36% to ceftriaxone, 10.22% to chloramphenicol and 7.95% each to ciprofloxacin and cefepime. Most of the isolates were susceptible, with a low MIC (≤ 0.25 µg/ml) value, to cefepime, cefotaxime, ciprofloxacin, ceftriaxone and co-trimoxazole and with a moderate MIC (0.5-4 µg/ml) to ampicillin, tetracycline, gentamicin and chloramphenicol. The resistance genes blaTEM, tetA and dfrA12 were most prevalent, irrespective of the host of origin of the isolates. While invA was used for molecular detection of Salmonella, other virulence genes, viz. sipA, sipB, sipC, stn and pagN, were also detected in all Salmonella isolates. A total of 38.64% isolates were multidrug-resistant (MDR), and various virulence genes were present among the isolated serovars. This study highlights the importance of continuous monitoring and surveillance for pathogenic Salmonella and their potential risks to both humans and animals.


Asunto(s)
Antibacterianos , Salmonella enterica , Ampicilina , Animales , Antibacterianos/farmacología , Cefepima , Ceftriaxona , Cloranfenicol , Ciprofloxacina , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Gentamicinas/farmacología , Humanos , Pruebas de Sensibilidad Microbiana/veterinaria , Prevalencia , Salmonella enterica/genética , Serogrupo , Tetraciclinas , Virulencia/genética
15.
Microbiol Resour Announc ; 11(11): e0022722, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36287079

RESUMEN

African swine fever virus (ASFV) entered the northeastern (NE) part of India early in 2020, causing huge economic loss to the piggery sector. Here, we are presenting a brief report on the draft genome sequence of an ASFV strain ABTCVSCK_ASF007 from Assam state of NE India belonging to genotype II.

16.
Virus Res ; 288: 198113, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32771430

RESUMEN

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is recognized as one of the life-threatening viruses causing the most destructive pandemic in this century. The genesis of this virus is still unknown. To elucidate its molecular evolution and regulation of gene expression, the knowledge of codon usage is a pre-requisite. In this study, an attempt was made to document the genome-wide codon usage profile and the various factors influencing the codon usage patterns of SARS-CoV-2 in human and dog. The SARS-CoV-2 genome showed relative abundance of A and U nucleotides and relative synonymous codon usage analysis revealed that the preferred synonymous codons mostly end with A/U. The analysis of ENc-GC3s, Neutrality and Parity rule 2 plots indicated that natural selection and other undefined factors dominate the overall codon usage bias in SARS-CoV-2 whereas the impact of mutation pressure is comparatively minor. The codon adaptation index and relative codon deoptimization index of SARS-CoV-2 deciphered that human is more favoured host for adaptation compared to dog. These results enhance our understanding of the factors involved in evolution of the novel human SARS-CoV-2 and its adaptability in dog.


Asunto(s)
Adaptación Biológica/genética , Betacoronavirus/genética , Uso de Codones , Infecciones por Coronavirus/virología , Enfermedades de los Perros/virología , Genoma Viral , Neumonía Viral/virología , Animales , COVID-19 , Gatos , Bovinos , Quirópteros , Perros , Evolución Molecular , Caballos , Especificidad del Huésped , Humanos , Mutación , Pandemias , SARS-CoV-2 , Selección Genética , Porcinos
17.
Infect Genet Evol ; 83: 104325, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32325193

RESUMEN

Japanese encephalitis virus (JEV) comes under the family Flaviviridae and genus flavivirus. Pigs act as reservoir and amplifying intermediate host for JEV. The current investigation was conducted to understand the prevalence of JEV infection in pigs in three different geographical sites in India (Odisha, Assam and Manipur). Total 857 serum samples were tested by ELISA and RT-PCR, while only RT-PCR was performed in case of 275 tonsils tissues for detection of JEV. It was observed that JEV prevalence was highest in Manipur (positive 39, 25.5% in serum and 10% in tonsil) but lower in Assam (positive 15, 3.8% in serum and 0% in tonsils) and Odisha (positive 7, 1.5% in serum and 3.7% in tonsils). Genotype III (GIII) of JEV was the dominant genotype. Further, analysis of E gene revealed sporadic mutations of S83G, H76P, E78Q, C55S, and S64W along with two consistent mutations V46S and V51I in GIII. Whereas, a single mutation S118N was observed in the GI strain. In conclusion, the high JE virus infection rate of pig in the current locations suggests the need for continuous surveillance of this virus in pigs which will ultimately help to adopt an effective control strategy to prevent the spread of JE infection to human.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/veterinaria , Enfermedades de los Porcinos/epidemiología , Animales , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Encefalitis Japonesa/diagnóstico , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/virología , Ensayo de Inmunoadsorción Enzimática , Genotipo , India/epidemiología , Epidemiología Molecular , Filogenia , Prevalencia , Porcinos , Enfermedades de los Porcinos/virología
18.
J Phys Chem B ; 123(1): 117-129, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30543430

RESUMEN

It is well reported that sugar molecules provide different types of stabilization to biomembranes both in vitro as well as in vivo. In the present article, our focus is to investigate the interactions of two sugar molecules (sucrose and sucralose) with the lamellar structures of aerosol OT (AOT). We have attempted the structural characterization of the lamellae in the presence and absence of sugars with the aid of dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), Fourier transformed infrared spectroscopy (FTIR), polarized optical microscopy (POM), and cryogenic-transmission electron microscopic (cryo-TEM) techniques. In this study, we have chosen three Coumarin dyes, which show a wide variation of hydrophobicity and performed a combination of steady-state and time-resolved fluorescence measurements to unveil the inner detail of the location of the sugars and their specific interactions with the lamellar structures. Our study reveals that sucrose molecules are present in the interfacial region with a major population whereas the most probable location of sucralose is the interior of the AOT bilayer. Therefore, sucralose molecules probably penetrate the bilayer by decreasing the efficient packing of AOT. The important essence of this study is the location and the interactions of sucralose with the lamellae which may provide a future direction to the transportation of the drug molecules in the biomembrane.


Asunto(s)
Cumarinas/química , Colorantes Fluorescentes/química , Simulación de Dinámica Molecular , Sacarosa/análogos & derivados , Sacarosa/química , Aerosoles/química , Estructura Molecular , Factores de Tiempo
19.
J Phys Chem B ; 123(45): 9699-9711, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31640345

RESUMEN

A broad spectrum tunable photoluminescent material with dual encryption based on a two-step fluorescence resonance energy transfer (FRET) between pyrene (Py), coumarin 480 (Cou480), and rhodamine 6G (R6G) in micelles of SDS and bmimDS is presented. The phenomenon is achievable due to the encapsulation of the fluorophores within these micelles. The transfer of energy as FRET between the pair Py and Cou480 showed ON at 336 nm and OFF at 402 nm in contrast to the FRET observed between the pair Cou480 and R6G that showed ON at 402 nm and OFF at 336 nm. However, the transfer of energy as FRET occurs from Py to R6G in the presence of Cou480 when excited at 336 nm, thereby making it a chain of three fluorophores with Cou480 acting as a relay fluorophore receiving energy from Py and transferring it to R6G. The different FRET scenarios between the three fluorophores in micelles provide a window for the generation of a matrix of colors, which occupies a significant 2D area in the chromaticity diagram, having potential applications in security printing. The different fluorophoric ratios generate different colors based on their individual photonic emissions and the FRET processes taking place between them. Writing tests were carried out using varied ratios of the fluorophores in the micellar systems producing different colored outputs under the UV light with insignificant visibility under the white light. We envision that this as-discovered three fluorophoric FRET system could form the basis for the future development of multi-FRET light-harvesting devices and anti-counterfeiting security inks based on much simpler non-covalent interaction aided encapsulation of the fluorophores within the self-assembled soft systems.

20.
Biophys Rev ; 10(3): 861-871, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29520677

RESUMEN

In the last two decades, researchers have extensively studied highly stable and ordered supramolecular assembly formation using oppositely charged surfactants. Thereafter, surface-active ionic liquids (SAILs), a special class of room temperature ionic liquids (RTILs), replace the surfactants to form various supramolecular aggregates. Therefore, in the last decade, the building blocks of the supramolecular aggregates (micelle, mixed micelle, and vesicular assemblies) have changed from oppositely charged surfactant/surfactant pair to surfactant/SAIL and SAIL/SAIL pair. It is also found that various biomolecules can also interact with SAILs to construct biologically important supramolecular assemblies. The very latest addition to this combination of ion pairs is the dye molecules having a long hydrophobic chain part along with a hydrophilic ionic head group. Thus, dye/surfactant or dye/SAIL pair also produces different assemblies through electrostatic, hydrophobic, and π-π stacking interactions. Vesicles are one of the important self-assemblies which mimic cellular membranes, and thus have biological application as a drug carrier. Moreover, vesicles can act as a suitable microreactor for nanoparticle synthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA