RESUMEN
SARS-CoV-2-specific CD8+ T cells recognize conserved viral peptides and in the absence of cross-reactive antibodies form an important line of protection against emerging viral variants as they ameliorate disease severity. SARS-CoV-2 mRNA vaccines induce robust spike-specific antibody and T cell responses in healthy individuals, but their effectiveness in patients with chronic immune-mediated inflammatory disorders (IMIDs) is less well defined. These patients are often treated with systemic immunosuppressants, which may negatively affect vaccine-induced immunity. Indeed, TNF inhibitor (TNFi)-treated inflammatory bowel disease (IBD) patients display reduced ability to maintain SARS-CoV-2 antibody responses post-vaccination, yet the effects on CD8+ T cells remain unclear. Here, we analyzed the impact of IBD and TNFi treatment on mRNA-1273 vaccine-induced CD8+ T cell responses compared to healthy controls in SARS-CoV-2 experienced and inexperienced patients. CD8+ T cells were analyzed for their ability to recognize 32 SARS-CoV-2-specific epitopes, restricted by 10 common HLA class I allotypes using heterotetramer combinatorial coding. This strategy allowed in-depth ex vivo profiling of the vaccine-induced CD8+ T cell responses using phenotypic and activation markers. mRNA vaccination of TNFi-treated and untreated IBD patients induced robust spike-specific CD8+ T cell responses with a predominant central memory and activated phenotype, comparable to those in healthy controls. Prominent non-spike-specific CD8+ T cell responses were observed in SARS-CoV-2 experienced donors prior to vaccination. Non-spike-specific CD8+ T cells persisted and spike-specific CD8+ T cells notably expanded after vaccination in these patient cohorts. Our data demonstrate that regardless of TNFi treatment or prior SARS-CoV-2 infection, IBD patients benefit from vaccination by inducing a robust spike-specific CD8+ T cell response.
Asunto(s)
COVID-19 , Enfermedades Inflamatorias del Intestino , Humanos , Linfocitos T CD8-positivos , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273 , Inhibidores del Factor de Necrosis Tumoral , Vacunación , Anticuerpos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Anticuerpos AntiviralesRESUMEN
BACKGROUND: Messenger RNA (mRNA) vaccines provide robust protection against SARS-CoV-2 in healthy individuals. However, immunity after vaccination of patients with multiple sclerosis (MS) treated with ocrelizumab (OCR), a B cell-depleting anti-CD20 monoclonal antibody, is not yet fully understood. METHODS: In this study, deep immune profiling techniques were employed to investigate the immune response induced by SARS-CoV-2 mRNA vaccines in untreated patients with MS (n=21), OCR-treated patients with MS (n=57) and healthy individuals (n=30). RESULTS: Among OCR-treated patients with MS, 63% did not produce detectable levels of antibodies (non-seroconverted), and those who did have lower spike receptor-binding domain-specific IgG responses compared with healthy individuals and untreated patients with MS. Before vaccination, no discernible immunological differences were observed between non-seroconverted and seroconverted OCR-treated patients with MS. However, non-seroconverted patients received overall more OCR infusions, had shorter intervals since their last OCR infusion and displayed higher OCR serum concentrations at the time of their initial vaccination. Following two vaccinations, non-seroconverted patients displayed smaller B cell compartments but instead exhibited more robust activation of general CD4+ and CD8+ T cell compartments, as indicated by upregulation of CD38 and HLA-DR surface expression, when compared with seroconverted patients. CONCLUSION: These findings highlight the importance of optimising treatment regimens when scheduling SARS-CoV-2 vaccination for OCR-treated patients with MS to maximise their humoral and cellular immune responses. This study provides valuable insights for optimising vaccination strategies in OCR-treated patients with MS, including the identification of CD38 and HLA-DR as potential markers to explore vaccine efficacy in non-seroconverting OCR-treated patients with MS.
Asunto(s)
ADP-Ribosil Ciclasa 1 , Anticuerpos Monoclonales Humanizados , Vacunas contra la COVID-19 , COVID-19 , Antígenos HLA-DR , Esclerosis Múltiple , Humanos , Femenino , Masculino , ADP-Ribosil Ciclasa 1/inmunología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/tratamiento farmacológico , Vacunas contra la COVID-19/uso terapéutico , Vacunas contra la COVID-19/inmunología , Antígenos HLA-DR/inmunología , Adulto , Persona de Mediana Edad , COVID-19/prevención & control , COVID-19/inmunología , Anticuerpos Monoclonales Humanizados/uso terapéutico , SARS-CoV-2/inmunología , Activación de Linfocitos , Anticuerpos Antivirales/sangre , Vacunas de ARNm/uso terapéutico , Antígenos CD20/inmunología , Vacunación , Linfocitos T CD4-Positivos/inmunología , Glicoproteínas de MembranaRESUMEN
BACKGROUND: CD11c+Tbet+ B cells are enriched in autoimmunity and chronic infections and also expand on immune challenge in healthy individuals. CD11c+Tbet+ B cells remain an enigmatic B-cell population because of their intrinsic heterogeneity. OBJECTIVES: We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-specific development and differentiation properties of 3 separate CD11c+ B-cell subsets-age-associated B cells (ABCs), double-negative 2 (DN2) B cells, and activated naive B cells-and compared them to their canonical CD11c- counterparts. METHODS: Dynamics of the response of the 3 CD11c+ B-cell subsets were assessed at SARS-CoV-2 vaccination in healthy donors by spectral flow cytometry. Distinct CD11c+ B-cell subsets were functionally characterized by optimized in vitro cultures. RESULTS: In contrast to a durable expansion of antigen-specific CD11c- memory B cells over time, both ABCs and DN2 cells were strongly expanded shortly after second vaccination and subsequently contracted. Functional characterization of antibody-secreting cell differentiation dynamics revealed that CD11c+Tbet+ B cells were primed for antibody-secreting cell differentiation compared to relevant canonical CD11c- counterparts. CONCLUSION: Overall, CD11c+Tbet+ B cells encompass heterogeneous subpopulations, of which primarily ABCs as well as DN2 B cells respond early to immune challenge and display a pre-antibody-secreting cell phenotype.
Asunto(s)
Subgrupos de Linfocitos B , COVID-19 , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Diferenciación CelularRESUMEN
γδ T cells are important components of the immune system due to their ability to elicit a fast and strong response against infected and transformed cells. Because they can specifically and effectively kill target cells in an MHC independent fashion, there is great interest to utilize these cells in anti-tumor therapies where antigen presentation may be hampered. Since only a small fraction of T cells in the blood or tumor tissue are γδ T cells, they require extensive expansion to allow for fundamental, preclinical and ex vivo research. Although expansion protocols can be successful, most are based on depletion of other cell types rather than γδ T cell specific isolation, resulting in unpredictable purity of the isolated fraction. Moreover, the primary focus only lies with expansion of Vδ2+ T cells, while Vδ1+ T cells likewise have anti-tumor potential. Here, we investigated whether γδ T cells directly isolated from blood could be efficiently expanded while maintaining function. γδ T cell subsets were isolated using MACS separation, followed by FACS sorting, yielding >99% pure γδ T cells. Isolated Vδ1+ and Vδ2+ T cells could effectively expand immediately after isolation or upon freeze/thawing and reached expansion ratios between 200 to 2000-fold starting from varying numbers using cytokine supported feeder stimulations. MACS/FACS isolated and PHA stimulated γδ T cells expanded as good as immobilized antibody mediated stimulated cells in PBMCs, but delivered purer cells. After expansion, potential effector functions of γδ T cells were demonstrated by IFN-γ, TNF-α and granzyme B production upon PMA/ionomycin stimulation and effective killing capacity of multiple tumor cell lines was confirmed in killing assays. In conclusion, pure γδ T cells can productively be expanded while maintaining their anti-tumor effector functions against tumor cells. Moreover, γδ T cells could be expanded from low starting numbers suggesting that this protocol may even allow for expansion of cells extracted from tumor biopsies.
Asunto(s)
Citocinas , Receptores de Antígenos de Linfocitos T gamma-delta , Citocinas/metabolismo , Línea Celular TumoralRESUMEN
OBJECTIVES: Methotrexate (MTX) is one of the most commonly used medications to treat rheumatoid arthritis (RA). However, the effect of MTX treatment on cellular immune responses remains incompletely understood. This raises concerns about the vulnerability of these patients to emerging infections and following vaccination. METHODS: In the current study, we investigated the impact of MTX treatment in patients with immune-mediated inflammatory disease on B and CD4 T cell SARS-CoV-2 vaccination responses. Eighteen patients with RA and two patients with psoriatic arthritis on MTX monotherapy were included, as well as 10 patients with RA without immunosuppressive treatment, and 29 healthy controls. CD4 T and B cell responses were analysed 7 days and 3-6 months after two SARS-CoV-2 messenger RNA vaccinations. High-dimensional flow cytometry analysis was used to analyse fresh whole blood, an activation-induced marker assay to measure antigen-specific CD4 T cells, and spike probes to study antigen-specific B cells. RESULTS: Seven days following two SARS-CoV-2 vaccinations, total B and T cell counts were similar between MTX-treated patients and controls. In addition, spike-specific B cell frequencies were unaffected. Remarkably, the frequency of antigen-specific CD4 T cells was reduced in patients using MTX and correlated strongly with anti-RBD IgG antibodies. These results suggest that decreased CD4 T cell activity may result in slower vaccination antibody responses in MTX-treated patients. CONCLUSION: Taken together, MTX treatment reduces vaccine-induced CD4 T cell activation, which correlates with lower antibody responses. TRIAL REGISTRATION NUMBER: NL8900.
Asunto(s)
Artritis Reumatoide , Linfocitos B , Linfocitos T CD4-Positivos , Vacunas contra la COVID-19 , COVID-19 , Metotrexato , SARS-CoV-2 , Humanos , Metotrexato/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Masculino , Persona de Mediana Edad , Femenino , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anciano , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Adulto , Linfocitos B/inmunología , Linfocitos B/efectos de los fármacos , Antirreumáticos/uso terapéutico , VacunaciónRESUMEN
Objectives: High-magnitude CD8+ T cell responses are associated with mild COVID-19 disease; however, the underlying characteristics that define CD8+ T cell-mediated protection are not well understood. The antigenic breadth and the immunodominance hierarchies of epitope-specific CD8+ T cells remain largely unexplored and are essential for the development of next-generation broad-protective vaccines. This study identified a broad spectrum of conserved SARS-CoV-2 CD8+ T cell epitopes and defined their respective immunodominance and phenotypic profiles following SARS-CoV-2 infection. Methods: CD8+ T cells from 51 convalescent COVID-19 donors were analysed for their ability to recognise 133 predicted and previously described SARS-CoV-2-derived peptides restricted by 11 common HLA class I allotypes using heterotetramer combinatorial coding, which combined with phenotypic markers allowed in-depth ex vivo profiling of CD8+ T cell responses at quantitative and phenotypic levels. Results: A comprehensive panel of 49 mostly conserved SARS-CoV-2-specific CD8+ T cell epitopes, including five newly identified low-magnitude epitopes, was established. We confirmed the immunodominance of HLA-A*01:01/ORF1ab1637-1646 and B*07:02/N105-113 and identified B*35:01/N325-333 as a third epitope with immunodominant features. The magnitude of subdominant epitope responses, including A*03:01/N361-369 and A*02:01/S269-277, depended on the donors' HLA-I context. All epitopes expressed prevalent memory phenotypes, with the highest memory frequencies in severe COVID-19 donors. Conclusion: SARS-CoV-2 infection induces a predominant CD8+ T memory response directed against a broad spectrum of conserved SARS-CoV-2 epitopes, which likely contributes to long-term protection against severe disease. The observed immunodominance hierarchy emphasises the importance of T cell epitopes derived from nonspike proteins to the overall protective and cross-reactive immune response, which could aid future vaccine strategies.