Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Struct Biol ; 190(2): 200-14, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25839831

RESUMEN

Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-maximization (E-M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300.


Asunto(s)
Algoritmos , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sustancias Macromoleculares/química , Modelos Moleculares , Modelos Teóricos , Funciones de Verosimilitud
2.
Med Image Anal ; 96: 103190, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38820677

RESUMEN

Inter-frame motion in dynamic cardiac positron emission tomography (PET) using rubidium-82 (82Rb) myocardial perfusion imaging impacts myocardial blood flow (MBF) quantification and the diagnosis accuracy of coronary artery diseases. However, the high cross-frame distribution variation due to rapid tracer kinetics poses a considerable challenge for inter-frame motion correction, especially for early frames where intensity-based image registration techniques often fail. To address this issue, we propose a novel method called Temporally and Anatomically Informed Generative Adversarial Network (TAI-GAN) that utilizes an all-to-one mapping to convert early frames into those with tracer distribution similar to the last reference frame. The TAI-GAN consists of a feature-wise linear modulation layer that encodes channel-wise parameters generated from temporal information and rough cardiac segmentation masks with local shifts that serve as anatomical information. Our proposed method was evaluated on a clinical 82Rb PET dataset, and the results show that our TAI-GAN can produce converted early frames with high image quality, comparable to the real reference frames. After TAI-GAN conversion, the motion estimation accuracy and subsequent myocardial blood flow (MBF) quantification with both conventional and deep learning-based motion correction methods were improved compared to using the original frames. The code is available at https://github.com/gxq1998/TAI-GAN.


Asunto(s)
Imagen de Perfusión Miocárdica , Tomografía de Emisión de Positrones , Radioisótopos de Rubidio , Humanos , Tomografía de Emisión de Positrones/métodos , Imagen de Perfusión Miocárdica/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
3.
IEEE Trans Med Imaging ; 42(7): 2032-2043, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35788451

RESUMEN

Graph Convolutional Neural Networks (GCNs) are widely used for graph analysis. Specifically, in medical applications, GCNs can be used for disease prediction on a population graph, where graph nodes represent individuals and edges represent individual similarities. However, GCNs rely on a vast amount of data, which is challenging to collect for a single medical institution. In addition, a critical challenge that most medical institutions continue to face is addressing disease prediction in isolation with incomplete data information. To address these issues, Federated Learning (FL) allows isolated local institutions to collaboratively train a global model without data sharing. In this work, we propose a framework, FedNI, to leverage network inpainting and inter-institutional data via FL. Specifically, we first federatively train missing node and edge predictor using a graph generative adversarial network (GAN) to complete the missing information of local networks. Then we train a global GCN node classifier across institutions using a federated graph learning platform. The novel design enables us to build more accurate machine learning models by leveraging federated learning and also graph learning approaches. We demonstrate that our federated model outperforms local and baseline FL methods with significant margins on two public neuroimaging datasets.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Humanos , Neuroimagen
4.
Mach Learn Clin Neuroimaging (2023) ; 14312: 133-142, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38371906

RESUMEN

The multifactorial etiology of autism spectrum disorder (ASD) suggests that its study would benefit greatly from multimodal approaches that combine data from widely varying platforms, e.g., neuroimaging, genetics, and clinical characterization. Prior neuroimaging-genetic analyses often apply naive feature concatenation approaches in data-driven work or use the findings from one modality to guide posthoc analysis of another, missing the opportunity to analyze the paired multimodal data in a truly unified approach. In this paper, we develop a more integrative model for combining genetic, demographic, and neuroimaging data. Inspired by the influence of genotype on phenotype, we propose using an attention-based approach where the genetic data guides attention to neuroimaging features of importance for model prediction. The genetic data is derived from copy number variation parameters, while the neuroimaging data is from functional magnetic resonance imaging. We evaluate the proposed approach on ASD classification and severity prediction tasks, using a sex-balanced dataset of 228 ASD and typically developing subjects in a 10-fold cross-validation framework. We demonstrate that our attention-based model combining genetic information, demographic data, and functional magnetic resonance imaging results in superior prediction performance compared to other multimodal approaches.

5.
IEEE Trans Med Imaging ; PP2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37368811

RESUMEN

In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for 18F-FDG and further improve model performance, we propose an interframe motion correction framework with Patlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested.

6.
IEEE Trans Radiat Plasma Med Sci ; 7(4): 344-353, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37842204

RESUMEN

Whole-body dynamic FDG-PET imaging through continuous-bed-motion (CBM) mode multi-pass acquisition protocol is a promising metabolism measurement. However, inter-pass misalignment originating from body movement could degrade parametric quantification. We aim to apply a non-rigid registration method for inter-pass motion correction in whole-body dynamic PET. 27 subjects underwent a 90-min whole-body FDG CBM PET scan on a Biograph mCT (Siemens Healthineers), acquiring 9 over-the-heart single-bed passes and subsequently 19 CBM passes (frames). The inter-pass motion correction was executed using non-rigid image registration with multi-resolution, B-spline free-form deformations. The parametric images were then generated by Patlak analysis. The overlaid Patlak slope Ki and y-intercept Vb images were visualized to qualitatively evaluate motion impact and correction effect. The normalized weighted mean squared Patlak fitting errors (NFE) were compared in the whole body, head, and hypermetabolic regions of interest (ROI). In Ki images, ROI statistics were collected and malignancy discrimination capacity was estimated by the area under the receiver operating characteristic curve (AUC). After the inter-pass motion correction was applied, the spatial misalignment appearance between Ki and Vb images was successfully reduced. Voxel-wise normalized fitting error maps showed global error reduction after motion correction. The NFE in the whole body (p = 0.0013), head (p = 0.0021), and ROIs (p = 0.0377) significantly decreased. The visual performance of each hypermetabolic ROI in Ki images was enhanced, while 3.59% and 3.67% average absolute percentage changes were observed in mean and maximum Ki values, respectively, across all evaluated ROIs. The estimated mean Ki values had substantial changes with motion correction (p = 0.0021). The AUC of both mean Ki and maximum Ki after motion correction increased, possibly suggesting the potential of enhancing oncological discrimination capacity through inter-pass motion correction.

7.
Simul Synth Med Imaging ; 14288: 64-74, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38464964

RESUMEN

The rapid tracer kinetics of rubidium-82 (82Rb) and high variation of cross-frame distribution in dynamic cardiac positron emission tomography (PET) raise significant challenges for inter-frame motion correction, particularly for the early frames where conventional intensity-based image registration techniques are not applicable. Alternatively, a promising approach utilizes generative methods to handle the tracer distribution changes to assist existing registration methods. To improve frame-wise registration and parametric quantification, we propose a Temporally and Anatomically Informed Generative Adversarial Network (TAI-GAN) to transform the early frames into the late reference frame using an all-to-one mapping. Specifically, a feature-wise linear modulation layer encodes channel-wise parameters generated from temporal tracer kinetics information, and rough cardiac segmentations with local shifts serve as the anatomical information. We validated our proposed method on a clinical 82Rb PET dataset and found that our TAI-GAN can produce converted early frames with high image quality, comparable to the real reference frames. After TAI-GAN conversion, motion estimation accuracy and clinical myocardial blood flow (MBF) quantification were improved compared to using the original frames. Our code is published at https://github.com/gxq1998/TAI-GAN.

8.
Front Neuroimaging ; 1: 952084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37555151

RESUMEN

Parkinson's disease (PD) is a common and complex neurodegenerative disorder with five stages on the Hoehn and Yahr scaling. Characterizing brain function alterations with progression of early stage disease would support accurate disease staging, development of new therapies, and objective monitoring of disease progression or treatment response. Functional magnetic resonance imaging (fMRI) is a promising tool in revealing functional connectivity (FC) differences and developing biomarkers in PD. While fMRI and FC data have been utilized for diagnosis of PD through application of machine learning approaches such as support vector machine and logistic regression, the characterization of FC changes in early-stage PD has not been investigated. Given the complexity and non-linearity of fMRI data, we propose the use of a long short-term memory (LSTM) network to distinguish the early stages of PD and understand related functional brain changes. The study included 84 subjects (56 in stage 2 and 28 in stage 1) from the Parkinson's Progression Markers Initiative (PPMI), the largest-available public PD dataset. Under a repeated 10-fold stratified cross-validation, the LSTM model reached an accuracy of 71.63%, 13.52% higher than the best traditional machine learning method and 11.56% higher than a CNN model, indicating significantly better robustness and accuracy compared with other machine learning classifiers. Finally, we used the learned LSTM model weights to select the top brain regions that contributed to model prediction and performed FC analyses to characterize functional changes with disease stage and motor impairment to gain better insight into the brain mechanisms of PD.

9.
Med Image Comput Comput Assist Interv ; 13434: 163-172, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38464686

RESUMEN

Inter-frame patient motion introduces spatial misalignment and degrades parametric imaging in whole-body dynamic positron emission tomography (PET). Most current deep learning inter-frame motion correction works consider only the image registration problem, ignoring tracer kinetics. We propose an inter-frame Motion Correction framework with Patlak regularization (MCP-Net) to directly optimize the Patlak fitting error and further improve model performance. The MCP-Net contains three modules: a motion estimation module consisting of a multiple-frame 3-D U-Net with a convolutional long short-term memory layer combined at the bottleneck; an image warping module that performs spatial transformation; and an analytical Patlak module that estimates Patlak fitting with the motion-corrected frames and the individual input function. A Patlak loss penalization term using mean squared percentage fitting error is introduced to the loss function in addition to image similarity measurement and displacement gradient loss. Following motion correction, the parametric images were generated by standard Patlak analysis. Compared with both traditional and deep learning benchmarks, our network further corrected the residual spatial mismatch in the dynamic frames, improved the spatial alignment of Patlak Ki/Vb images, and reduced normalized fitting error. With the utilization of tracer dynamics and enhanced network performance, MCP-Net has the potential for further improving the quantitative accuracy of dynamic PET. Our code is released at https://github.com/gxq1998/MCP-Net.

10.
Med Image Anal ; 80: 102524, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35797734

RESUMEN

Subject motion in whole-body dynamic PET introduces inter-frame mismatch and seriously impacts parametric imaging. Traditional non-rigid registration methods are generally computationally intense and time-consuming. Deep learning approaches are promising in achieving high accuracy with fast speed, but have yet been investigated with consideration for tracer distribution changes or in the whole-body scope. In this work, we developed an unsupervised automatic deep learning-based framework to correct inter-frame body motion. The motion estimation network is a convolutional neural network with a combined convolutional long short-term memory layer, fully utilizing dynamic temporal features and spatial information. Our dataset contains 27 subjects each under a 90-min FDG whole-body dynamic PET scan. Evaluating performance in motion simulation studies and a 9-fold cross-validation on the human subject dataset, compared with both traditional and deep learning baselines, we demonstrated that the proposed network achieved the lowest motion prediction error, obtained superior performance in enhanced qualitative and quantitative spatial alignment between parametric Ki and Vb images, and significantly reduced parametric fitting error. We also showed the potential of the proposed motion correction method for impacting downstream analysis of the estimated parametric images, improving the ability to distinguish malignant from benign hypermetabolic regions of interest. Once trained, the motion estimation inference time of our proposed network was around 460 times faster than the conventional registration baseline, showing its potential to be easily applied in clinical settings.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Memoria a Corto Plazo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero/métodos
11.
Med Image Anal ; 74: 102233, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34655865

RESUMEN

Understanding which brain regions are related to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurological biomarkers. Considering the special property of brain graphs, we design novel ROI-aware graph convolutional (Ra-GConv) layers that leverage the topological and functional information of fMRI. Motivated by the need for transparency in medical image analysis, our BrainGNN contains ROI-selection pooling layers (R-pool) that highlight salient ROIs (nodes in the graph), so that we can infer which ROIs are important for prediction. Furthermore, we propose regularization terms-unit loss, topK pooling (TPK) loss and group-level consistency (GLC) loss-on pooling results to encourage reasonable ROI-selection and provide flexibility to encourage either fully individual- or patterns that agree with group-level data. We apply the BrainGNN framework on two independent fMRI datasets: an Autism Spectrum Disorder (ASD) fMRI dataset and data from the Human Connectome Project (HCP) 900 Subject Release. We investigate different choices of the hyper-parameters and show that BrainGNN outperforms the alternative fMRI image analysis methods in terms of four different evaluation metrics. The obtained community clustering and salient ROI detection results show a high correspondence with the previous neuroimaging-derived evidence of biomarkers for ASD and specific task states decoded for HCP. Our code is available at https://github.com/xxlya/BrainGNN_Pytorch.


Asunto(s)
Trastorno del Espectro Autista , Conectoma , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Redes Neurales de la Computación
12.
IEEE Trans Med Imaging ; 40(12): 3293-3304, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34018932

RESUMEN

Patient motion during dynamic PET imaging can induce errors in myocardial blood flow (MBF) estimation. Motion correction for dynamic cardiac PET is challenging because the rapid tracer kinetics of 82Rb leads to substantial tracer distribution change across different dynamic frames over time, which can cause difficulties for image registration-based motion correction, particularly for early dynamic frames. In this paper, we developed an automatic deep learning-based motion correction (DeepMC) method for dynamic cardiac PET. In this study we focused on the detection and correction of inter-frame rigid translational motion caused by voluntary body movement and pattern change of respiratory motion. A bidirectional-3D LSTM network was developed to fully utilize both local and nonlocal temporal information in the 4D dynamic image data for motion detection. The network was trained and evaluated over motion-free patient scans with simulated motion so that the motion ground-truths are available, where one million samples based on 65 patient scans were used in training, and 600 samples based on 20 patient scans were used in evaluation. The proposed method was also evaluated using additional 10 patient datasets with real motion. We demonstrated that the proposed DeepMC obtained superior performance compared to conventional registration-based methods and other convolutional neural networks (CNN), in terms of motion estimation and MBF quantification accuracy. Once trained, DeepMC is much faster than the registration-based methods and can be easily integrated into the clinical workflow. In the future work, additional investigation is needed to evaluate this approach in a clinical context with realistic patient motion.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador , Movimiento (Física) , Movimiento , Tomografía de Emisión de Positrones
13.
Med Image Anal ; 70: 101972, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33677261

RESUMEN

Large, open-source datasets, such as the Human Connectome Project and the Autism Brain Imaging Data Exchange, have spurred the development of new and increasingly powerful machine learning approaches for brain connectomics. However, one key question remains: are we capturing biologically relevant and generalizable information about the brain, or are we simply overfitting to the data? To answer this, we organized a scientific challenge, the Connectomics in NeuroImaging Transfer Learning Challenge (CNI-TLC), held in conjunction with MICCAI 2019. CNI-TLC included two classification tasks: (1) diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD) within a pre-adolescent cohort; and (2) transference of the ADHD model to a related cohort of Autism Spectrum Disorder (ASD) patients with an ADHD comorbidity. In total, 240 resting-state fMRI (rsfMRI) time series averaged according to three standard parcellation atlases, along with clinical diagnosis, were released for training and validation (120 neurotypical controls and 120 ADHD). We also provided Challenge participants with demographic information of age, sex, IQ, and handedness. The second set of 100 subjects (50 neurotypical controls, 25 ADHD, and 25 ASD with ADHD comorbidity) was used for testing. Classification methodologies were submitted in a standardized format as containerized Docker images through ChRIS, an open-source image analysis platform. Utilizing an inclusive approach, we ranked the methods based on 16 metrics: accuracy, area under the curve, F1-score, false discovery rate, false negative rate, false omission rate, false positive rate, geometric mean, informedness, markedness, Matthew's correlation coefficient, negative predictive value, optimized precision, precision, sensitivity, and specificity. The final rank was calculated using the rank product for each participant across all measures. Furthermore, we assessed the calibration curves of each methodology. Five participants submitted their method for evaluation, with one outperforming all other methods in both ADHD and ASD classification. However, further improvements are still needed to reach the clinical translation of functional connectomics. We have kept the CNI-TLC open as a publicly available resource for developing and validating new classification methodologies in the field of connectomics.


Asunto(s)
Trastorno del Espectro Autista , Conectoma , Adolescente , Trastorno del Espectro Autista/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Neuroimagen
14.
Artículo en Inglés | MEDLINE | ID: mdl-34422224

RESUMEN

We propose a method for estimating more reproducible functional networks that are more strongly associated with dynamic task activity by using recurrent neural networks with long short term memory (LSTMs). The LSTM model is trained in an unsupervised manner to learn to generate the functional magnetic resonance imaging (fMRI) time-series data in regions of interest. The learned functional networks can then be used for further analysis, e.g., correlation analysis to determine functional networks that are strongly associated with an fMRI task paradigm. We test our approach and compare to other methods for decomposing functional networks from fMRI activity on 2 related but separate datasets that employ a biological motion perception task. We demonstrate that the functional networks learned by the LSTM model are more strongly associated with the task activity and dynamics compared to other approaches. Furthermore, the patterns of network association are more closely replicated across subjects within the same dataset as well as across datasets. More reproducible functional networks are essential for better characterizing the neural correlates of a target task.

15.
IEEE Trans Med Imaging ; 39(11): 3331-3342, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32356739

RESUMEN

In this project, our goal is to develop a method for interpreting how a neural network makes layer-by-layer embedded decisions when trained for a classification task, and also to use this insight for improving the model performance. To do this, we first approximate the distribution of the image representations in these embeddings using random forest models, the output of which, termed embedding outputs, are used for measuring how the network classifies each sample. Next, we design a pipeline to use this layer embedding output to calibrate the original model output for improved probability calibration and classification. We apply this two-steps method in a fully convolutional neural network trained for a liver tissue classification task on our institutional dataset that contains 20 3D multi-parameter MR images for patients with hepatocellular carcinoma, as well as on a public dataset with 131 3D CT images. The results show that our method is not only able to provide visualizations that are easy to interpret, but that the embedded decision-based information is also useful for improving model performance in terms of probability calibration and classification, achieving the best performance compared to other baseline methods. Moreover, this method is computationally efficient, easy to implement, and robust to hyper-parameters.


Asunto(s)
Imagenología Tridimensional , Redes Neurales de la Computación , Calibración , Humanos , Hígado , Probabilidad
16.
Med Image Anal ; 65: 101765, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32679533

RESUMEN

Deep learning models have shown their advantage in many different tasks, including neuroimage analysis. However, to effectively train a high-quality deep learning model, the aggregation of a significant amount of patient information is required. The time and cost for acquisition and annotation in assembling, for example, large fMRI datasets make it difficult to acquire large numbers at a single site. However, due to the need to protect the privacy of patient data, it is hard to assemble a central database from multiple institutions. Federated learning allows for population-level models to be trained without centralizing entities' data by transmitting the global model to local entities, training the model locally, and then averaging the gradients or weights in the global model. However, some studies suggest that private information can be recovered from the model gradients or weights. In this work, we address the problem of multi-site fMRI classification with a privacy-preserving strategy. To solve the problem, we propose a federated learning approach, where a decentralized iterative optimization algorithm is implemented and shared local model weights are altered by a randomization mechanism. Considering the systemic differences of fMRI distributions from different sites, we further propose two domain adaptation methods in this federated learning formulation. We investigate various practical aspects of federated model optimization and compare federated learning with alternative training strategies. Overall, our results demonstrate that it is promising to utilize multi-site data without data sharing to boost neuroimage analysis performance and find reliable disease-related biomarkers. Our proposed pipeline can be generalized to other privacy-sensitive medical data analysis problems. Our code is publicly available at: https://github.com/xxlya/Fed_ABIDE/.


Asunto(s)
Imagen por Resonancia Magnética , Privacidad , Algoritmos , Bases de Datos Factuales , Humanos
17.
Proc Mach Learn Res ; 119: 11639-11649, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34308361

RESUMEN

Neural ordinary differential equations (NODEs) have recently attracted increasing attention; however, their empirical performance on benchmark tasks (e.g. image classification) are significantly inferior to discrete-layer models. We demonstrate an explanation for their poorer performance is the inaccuracy of existing gradient estimation methods: the adjoint method has numerical errors in reverse-mode integration; the naive method directly back-propagates through ODE solvers, but suffers from a redundantly deep computation graph when searching for the optimal stepsize. We propose the Adaptive Checkpoint Adjoint (ACA) method: in automatic differentiation, ACA applies a trajectory checkpoint strategy which records the forward-mode trajectory as the reverse-mode trajectory to guarantee accuracy; ACA deletes redundant components for shallow computation graphs; and ACA supports adaptive solvers. On image classification tasks, compared with the adjoint and naive method, ACA achieves half the error rate in half the training time; NODE trained with ACA outperforms ResNet in both accuracy and test-retest reliability. On time-series modeling, ACA outperforms competing methods. Finally, in an example of the three-body problem, we show NODE with ACA can incorporate physical knowledge to achieve better accuracy. We provide the PyTorch implementation of ACA: https://github.com/juntang-zhuang/torch-ACA.

18.
Mach Learn Med Imaging ; 12436: 363-372, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34308438

RESUMEN

Heterogeneous presentation of a neurological disorder suggests potential differences in the underlying pathophysiological changes that occur in the brain. We propose to model heterogeneous patterns of functional network differences using a demographic-guided attention (DGA) mechanism for recurrent neural network models for prediction from functional magnetic resonance imaging (fMRI) time-series data. The context computed from the DGA head is used to help focus on the appropriate functional networks based on individual demographic information. We demonstrate improved classification on 3 subsets of the ABIDE I dataset used in published studies that have previously produced state-of-the-art results, evaluating performance under a leave-one-site-out cross-validation framework for better generalizeability to new data. Finally, we provide examples of interpreting functional network differences based on individual demographic variables.

19.
Artículo en Inglés | MEDLINE | ID: mdl-34308439

RESUMEN

Complex deep learning models have shown their impressive power in analyzing high-dimensional medical image data. To increase the trust of applying deep learning models in medical field, it is essential to understand why a particular prediction was reached. Data feature importance estimation is an important approach to understand both the model and the underlying properties of data. Shapley value explanation (SHAP) is a technique to fairly evaluate input feature importance of a given model. However, the existing SHAP-based explanation works have limitations such as 1) computational complexity, which hinders their applications on high-dimensional medical image data; 2) being sensitive to noise, which can lead to serious errors. Therefore, we propose an uncertainty estimation method for the feature importance results calculated by SHAP. Then we theoretically justify the methods under a Shapley value framework. Finally we evaluate our methods on MNIST and a public neuroimaging dataset. We show the potential of our method to discover disease related biomarkers from neuroimaging data.

20.
Artículo en Inglés | MEDLINE | ID: mdl-33082616

RESUMEN

Significant progress has been made using fMRI to characterize the brain changes that occur in ASD, a complex neuro-developmental disorder. However, due to the high dimensionality and low signal-to-noise ratio of fMRI, embedding informative and robust brain regional fMRI representations for both graph-level classification and region-level functional difference detection tasks between ASD and healthy control (HC) groups is difficult. Here, we model the whole brain fMRI as a graph, which preserves geometrical and temporal information and use a Graph Neural Network (GNN) to learn from the graph-structured fMRI data. We investigate the potential of including mutual information (MI) loss (Infomax), which is an unsupervised term encouraging large MI of each nodal representation and its corresponding graph-level summarized representation to learn a better graph embedding. Specifically, this work developed a pipeline including a GNN encoder, a classifier and a discriminator, which forces the encoded nodal representations to both benefit classification and reveal the common nodal patterns in a graph. We simultaneously optimize graph-level classification loss and Infomax. We demonstrated that Infomax graph embedding improves classification performance as a regularization term. Furthermore, we found separable nodal representations of ASD and HC groups in prefrontal cortex, cingulate cortex, visual regions, and other social, emotional and execution related brain regions. In contrast with GNN with classification loss only, the proposed pipeline can facilitate training more robust ASD classification models. Moreover, the separable nodal representations can detect the functional differences between the two groups and contribute to revealing new ASD biomarkers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA