Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nucleic Acids Res ; 41(5): 3274-88, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23355610

RESUMEN

Helicobacter pylori is a Gram-negative bacterium that colonizes human stomach and causes gastric inflammation. The species is naturally competent and displays remarkable diversity. The presence of a large number of restriction-modification (R-M) systems in this bacterium creates a barrier against natural transformation by foreign DNA. Yet, mechanisms that protect incoming double-stranded DNA (dsDNA) from restriction enzymes are not well understood. A DNA-binding protein, DNA Processing Protein A (DprA) has been shown to facilitate natural transformation of several Gram-positive and Gram-negative bacteria by protecting incoming single-stranded DNA (ssDNA) and promoting RecA loading on it. However, in this study, we report that H. pylori DprA (HpDprA) binds not only ssDNA but also dsDNA thereby conferring protection to both from various exonucleases and Type II restriction enzymes. Here, we observed a stimulatory role of HpDprA in DNA methylation through physical interaction with methyltransferases. Thus, HpDprA displayed dual functional interaction with H. pylori R-M systems by not only inhibiting the restriction enzymes but also stimulating methyltransferases. These results indicate that HpDprA could be one of the factors that modulate the R-M barrier during inter-strain natural transformation in H. pylori.


Asunto(s)
Proteínas Bacterianas/fisiología , Competencia de la Transformación por ADN , Helicobacter pylori/genética , Proteínas de la Membrana/fisiología , Proteínas Bacterianas/química , Huella de ADN , ADN de Cadena Simple/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Ensayo de Cambio de Movilidad Electroforética , Proteínas de la Membrana/química , Metiltransferasas/química , Oligodesoxirribonucleótidos/química , Unión Proteica , Transformación Bacteriana
2.
Science ; 370(6522)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33303586

RESUMEN

Determining structures of protein complexes is crucial for understanding cellular functions. Here, we describe an integrative structure determination approach that relies on in vivo measurements of genetic interactions. We construct phenotypic profiles for point mutations crossed against gene deletions or exposed to environmental perturbations, followed by converting similarities between two profiles into an upper bound on the distance between the mutated residues. We determine the structure of the yeast histone H3-H4 complex based on ~500,000 genetic interactions of 350 mutants. We then apply the method to subunits Rpb1-Rpb2 of yeast RNA polymerase II and subunits RpoB-RpoC of bacterial RNA polymerase. The accuracy is comparable to that based on chemical cross-links; using restraints from both genetic interactions and cross-links further improves model accuracy and precision. The approach provides an efficient means to augment integrative structure determination with in vivo observations.


Asunto(s)
Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mapas de Interacción de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Histonas/química , Histonas/genética , Mutación , Conformación Proteica , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/genética
3.
PLoS One ; 10(7): e0131116, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26135134

RESUMEN

DNA processing protein A (DprA) plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA) acts as an accessory factor for RecA mediated DNA strand exchange. H. pylori DprA (HpDprA) is divided into an N-terminal domain and a C- terminal domain. In the present study, individual domains of HpDprA have been characterized for their ability to bind single stranded (ssDNA) and double stranded DNA (dsDNA). Oligomeric studies revealed that HpDprA possesses two sites for dimerization which enables HpDprA to form large and tightly packed complexes with ss and dsDNA. While the N-terminal domain was found to be sufficient for binding with ss or ds DNA, C-terminal domain has an important role in the assembly of poly-nucleoprotein complex. Using site directed mutagenesis approach, we show that a pocket comprising positively charged amino acids in the N-terminal domain has an important role in the binding of ss and dsDNA. Together, a functional cross talk between the two domains of HpDprA facilitating the binding and formation of higher order complex with DNA is discussed.


Asunto(s)
Proteínas Bacterianas/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , ADN/genética , Regulación Bacteriana de la Expresión Génica , Helicobacter pylori/genética , Proteínas de la Membrana/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Helicobacter pylori/metabolismo , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA