Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 148(4): 752-64, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22341447

RESUMEN

Local protein synthesis plays a key role in regulating stimulus-induced responses in dendrites and axons. Recent genome-wide studies have revealed that thousands of different transcripts reside in these distal neuronal compartments, but identifying those with functionally significant roles presents a challenge. We performed an unbiased screen to look for stimulus-induced, protein synthesis-dependent changes in the proteome of Xenopus retinal ganglion cell (RGC) axons. The intermediate filament protein lamin B2 (LB2), normally associated with the nuclear membrane, was identified as an unexpected major target. Axonal ribosome immunoprecipitation confirmed translation of lb2 mRNA in vivo. Inhibition of lb2 mRNA translation in axons in vivo does not affect guidance but causes axonal degeneration. Axonal LB2 associates with mitochondria, and LB2-deficient axons exhibit mitochondrial dysfunction and defects in axonal transport. Our results thus suggest that axonally synthesized lamin B plays a crucial role in axon maintenance by promoting mitochondrial function.


Asunto(s)
Axones/metabolismo , Lamina Tipo B/metabolismo , Mitocondrias/metabolismo , Células Ganglionares de la Retina/metabolismo , Xenopus laevis/embriología , Animales , Transporte Axonal , Embrión no Mamífero/metabolismo , Biosíntesis de Proteínas , Xenopus laevis/metabolismo
2.
Neuron ; 49(2): 215-28, 2006 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-16423696

RESUMEN

Slits mediate multiple axon guidance decisions, but the mechanisms underlying the responses of growth cones to these cues remain poorly defined. We show here that collapse induced by Slit2-conditioned medium (Slit2-CM) in Xenopus retinal growth cones requires local protein synthesis (PS) and endocytosis. Slit2-CM elicits rapid activation of translation regulators and MAP kinases in growth cones, and inhibition of MAPKs or disruption of heparan sulfate blocks Slit2-CM-induced PS and repulsion. Interestingly, Slit2-CM causes a fast PS-dependent decrease in cytoskeletal F-actin concomitant with a PS-dependent increase in the actin-depolymerizing protein cofilin. Our findings reveal an unexpected link between Slit2 and cofilin in growth cones and suggest that local translation of actin regulatory proteins contributes to repulsion.


Asunto(s)
Conos de Crecimiento/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Retina/fisiología , Transducción de Señal/fisiología , Factores Despolimerizantes de la Actina/fisiología , Actinas/metabolismo , Animales , Axones/fisiología , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Regulación de la Expresión Génica/fisiología , Conos de Crecimiento/ultraestructura , Heparitina Sulfato/fisiología , Inmunoprecipitación , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular , Leucina/metabolismo , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/efectos de los fármacos , Técnicas de Cultivo de Órganos , Proteínas Quinasas/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Retina/ultraestructura , Serina-Treonina Quinasas TOR , Xenopus laevis
3.
J Neurosci ; 28(1): 100-5, 2008 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-18171927

RESUMEN

NF-protocadherin (NFPC)-mediated cell-cell adhesion plays a critical role in vertebrate neural tube formation. NFPC is also expressed during the period of axon tract formation, but little is known about its function in axonogenesis. Here we have tested the role of NFPC and its cytosolic cofactor template-activating factor 1 (TAF1) in the emergence of the Xenopus retinotectal projection. NFPC is expressed in the developing retina and optic pathway and is abundant in growing retinal axons. Inhibition of NFPC function in developing retinal ganglion cells (RGCs) severely reduces axon initiation and elongation and suppresses dendrite genesis. Furthermore, an identical phenotype occurs when TAF1 function is blocked. These data provide evidence that NFPC regulates axon initiation and elongation and indicate a conserved role for TAF1, a transcriptional regulator, as a downstream cytosolic effector of NFPC in RGCs.


Asunto(s)
Axones/fisiología , Cadherinas/fisiología , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Ganglionares de la Retina/citología , Proteínas de Xenopus/fisiología , Animales , Embrión no Mamífero , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Técnicas de Cultivo de Órganos , Protocadherinas , Retina/citología , Transfección/métodos , Xenopus
4.
Nat Neurosci ; 8(10): 1301-9, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16172602

RESUMEN

Axon growth is governed by the ability of growth cones to interpret attractive and repulsive guidance cues. Recent studies have shown that secreted signaling molecules known as morphogens can also act as axon guidance cues. Of the large family of Wnt signaling components, only Wnt4 and Wnt5 seem to participate directly in axon guidance. Here we show that secreted Frizzled-related protein 1 (SFRP1), a proposed Wnt signaling inhibitor, can directly modify and reorient the growth of chick and Xenopus laevis retinal ganglion cell axons. This activity does not require Wnt inhibition and is modulated by extracellular matrix molecules. Intracellularly, SFRP1 function requires G(alpha) protein activation, protein synthesis and degradation, and it is modulated by cyclic nucleotide levels. Because SFRP1 interacts with Frizzled-2 (Fz2) and interference with Fz2 expression abolishes growth cone responses to SFRP1, we propose a previously unknown function for this molecule: the ability to guide growth cone movement via the Fz2 receptor.


Asunto(s)
Axones/fisiología , Proteínas/farmacología , Receptores Acoplados a Proteínas G/fisiología , Retina/citología , Células Ganglionares de la Retina/citología , Animales , Animales Modificados Genéticamente , Axones/efectos de los fármacos , Encéfalo/embriología , Encéfalo/metabolismo , Células Cultivadas , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Fibronectinas/farmacología , Inmunohistoquímica/métodos , Inmunoprecipitación/métodos , Hibridación in Situ/métodos , Péptidos y Proteínas de Señalización Intracelular , Laminina/farmacología , Morfolinas/farmacología , Neuritas/efectos de los fármacos , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Proteínas/genética , Proteínas/metabolismo , Células Ganglionares de la Retina/fisiología , Factores de Tiempo , Vías Visuales/embriología , Vías Visuales/metabolismo , Xenopus laevis
5.
Elife ; 82019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31746735

RESUMEN

Extrinsic cues trigger the local translation of specific mRNAs in growing axons via cell surface receptors. The coupling of ribosomes to receptors has been proposed as a mechanism linking signals to local translation but it is not known how broadly this mechanism operates, nor whether it can selectively regulate mRNA translation. We report that receptor-ribosome coupling is employed by multiple guidance cue receptors and this interaction is mRNA-dependent. We find that different receptors associate with distinct sets of mRNAs and RNA-binding proteins. Cue stimulation of growing Xenopus retinal ganglion cell axons induces rapid dissociation of ribosomes from receptors and the selective translation of receptor-specific mRNAs. Further, we show that receptor-ribosome dissociation and cue-induced selective translation are inhibited by co-exposure to translation-repressive cues, suggesting a novel mode of signal integration. Our findings reveal receptor-specific interactomes and suggest a generalizable model for cue-selective control of the local proteome.


Asunto(s)
Axones/fisiología , ARN Mensajero/genética , Receptores de Superficie Celular/genética , Xenopus laevis/genética , Animales , Axones/metabolismo , Biosíntesis de Proteínas/genética , Proteoma/genética , Proteínas de Unión al ARN/genética , Células Ganglionares de la Retina/metabolismo , Ribosomas/genética , Transducción de Señal , Xenopus laevis/crecimiento & desarrollo
6.
Cell Rep ; 29(11): 3605-3619.e10, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31825839

RESUMEN

Ribosome assembly occurs mainly in the nucleolus, yet recent studies have revealed robust enrichment and translation of mRNAs encoding many ribosomal proteins (RPs) in axons, far away from neuronal cell bodies. Here, we report a physical and functional interaction between locally synthesized RPs and ribosomes in the axon. We show that axonal RP translation is regulated through a sequence motif, CUIC, that forms an RNA-loop structure in the region immediately upstream of the initiation codon. Using imaging and subcellular proteomics techniques, we show that RPs synthesized in axons join axonal ribosomes in a nucleolus-independent fashion. Inhibition of axonal CUIC-regulated RP translation decreases local translation activity and reduces axon branching in the developing brain, revealing the physiological relevance of axonal RP synthesis in vivo. These results suggest that axonal translation supplies cytoplasmic RPs to maintain/modify local ribosomal function far from the nucleolus in neurons.


Asunto(s)
Axones/metabolismo , Neurogénesis , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Animales , Axones/ultraestructura , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Células Cultivadas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Xenopus laevis
7.
BMC Dev Biol ; 7: 107, 2007 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-17900342

RESUMEN

BACKGROUND: Blastomere injection of mRNA or antisense oligonucleotides has proven effective in analyzing early gene function in Xenopus. However, functional analysis of genes involved in neuronal differentiation and axon pathfinding by this method is often hampered by earlier function of these genes during development. Therefore, fine spatio-temporal control of over-expression or knock-down approaches is required to specifically address the role of a given gene in these processes. RESULTS: We describe here an electroporation procedure that can be used with high efficiency and low toxicity for targeting DNA and antisense morpholino oligonucleotides (MOs) into spatially restricted regions of the Xenopus CNS at a critical time-window of development (22-50 hour post-fertilization) when axonal tracts are first forming. The approach relies on the design of "electroporation chambers" that enable reproducible positioning of fixed-spaced electrodes coupled with accurate DNA/MO injection. Simple adjustments can be made to the electroporation chamber to suit the shape of different aged embryos and to alter the size and location of the targeted region. This procedure can be used to electroporate separate regions of the CNS in the same embryo allowing separate manipulation of growing axons and their intermediate and final targets in the brain. CONCLUSION: Our study demonstrates that electroporation can be used as a versatile tool to investigate molecular pathways involved in axon extension during Xenopus embryogenesis. Electroporation enables gain or loss of function studies to be performed with easy monitoring of electroporated cells. Double-targeted transfection provides a unique opportunity to monitor axon-target interaction in vivo. Finally, electroporated embryos represent a valuable source of MO-loaded or DNA transfected cells for in vitro analysis. The technique has broad applications as it can be tailored easily to other developing organ systems and to other organisms by making simple adjustments to the electroporation chamber.


Asunto(s)
ADN Complementario/genética , Electroporación , Regulación del Desarrollo de la Expresión Génica , Oligonucleótidos Antisentido , Xenopus laevis/embriología , Proteínas de Pez Cebra/genética , Animales , Tipificación del Cuerpo/genética , Sistema Nervioso Central/embriología , Embrión no Mamífero , Proteínas Fluorescentes Verdes , Transfección , Xenopus laevis/genética
8.
Open Biol ; 6(4): 150218, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27248654

RESUMEN

Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS.


Asunto(s)
Axones/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Biosíntesis de Proteínas , Receptores de Superficie Celular/metabolismo , Retina/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Axones/efectos de los fármacos , Receptor DCC , Endocitosis/efectos de los fármacos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Técnicas de Silenciamiento del Gen , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Factores de Crecimiento Nervioso/farmacología , Netrina-1 , Fenotipo , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/genética , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Proteínas Supresoras de Tumor/farmacología , Proteínas de Xenopus/genética , Xenopus laevis
9.
Nat Neurosci ; 19(12): 1592-1598, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27643431

RESUMEN

During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell axons. In vivo atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo.


Asunto(s)
Axones/metabolismo , Encéfalo/crecimiento & desarrollo , Mecanotransducción Celular/fisiología , Neurogénesis/fisiología , Retina/metabolismo , Vías Visuales/crecimiento & desarrollo , Animales , Axones/patología , Células Ganglionares de la Retina , Xenopus laevis , Pez Cebra
10.
Nat Neurosci ; 16(2): 166-73, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23292679

RESUMEN

Cell adhesion molecules and diffusible cues both regulate axon pathfinding, yet how these two modes of signaling interact is poorly understood. The homophilic cell adhesion molecule NF-protocadherin (NFPC) is expressed in the mid-dorsal optic tract neuroepithelium and in the axons of developing retinal ganglion cells (RGC) in Xenopus laevis. Here we report that targeted disruption of NFPC function in RGC axons or the optic tract neuroepithelium results in unexpectedly localized pathfinding defects at the caudal turn in the mid-optic tract. Semaphorin 3A (Sema3A), which lies adjacent to this turn, stimulates rapid, protein synthesis-dependent increases in growth cone NFPC and its cofactor, TAF1, in vitro. In vivo, growth cones exhibit marked increases in NFPC translation reporter activity in this mid-optic tract region that are attenuated by blocking neuropilin-1 function. Our results suggest that translation-linked coupling between regionally localized diffusible cues and cell adhesion can help axons navigate discrete segments of the pathway.


Asunto(s)
Axones/fisiología , Cadherinas/fisiología , Señales (Psicología) , Biosíntesis de Proteínas , Células Ganglionares de la Retina/citología , Transducción de Señal/fisiología , Vías Visuales/fisiología , Proteínas de Xenopus/fisiología , Análisis de Varianza , Animales , Anisomicina/farmacología , Células COS , Cadherinas/genética , Chlorocebus aethiops , Electroporación , Embrión no Mamífero , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Células Neuroepiteliales/fisiología , Técnicas de Cultivo de Órganos , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Protocadherinas , Retina/citología , Semaforina-3A/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factores de Transcripción/metabolismo , Transfección , Proteínas de Xenopus/genética , Xenopus laevis
11.
Neuron ; 65(3): 341-57, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20159448

RESUMEN

Regulated protein degradation via the ubiquitin-proteasome system (UPS) plays a central role in building synaptic connections, yet little is known about either which specific UPS components are involved or UPS targets in neurons. We report that inhibiting the UPS in developing Xenopus retinal ganglion cells (RGCs) with a dominant-negative ubiquitin mutant decreases terminal branching in the tectum but does not affect long-range navigation to the tectum. We identify Nedd4 as a prominently expressed E3 ligase in RGC axon growth cones and show that disrupting its function severely inhibits terminal branching. We further demonstrate that PTEN, a negative regulator of the PI3K pathway, is a key downstream target of Nedd4: not only does Nedd4 regulate PTEN levels in RGC growth cones, but also, the decrease of PTEN rescues the branching defect caused by Nedd4 inhibition. Together our data suggest that Nedd4-regulated PTEN is a key regulator of terminal arborization in vivo.


Asunto(s)
Axones/fisiología , Regulación hacia Abajo/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Conos de Crecimiento/fisiología , Fosfohidrolasa PTEN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Arginina/genética , Línea Celular Transformada , Regulación hacia Abajo/genética , Electroporación/métodos , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunoprecipitación/métodos , Lisina/genética , Microscopía Confocal/métodos , Mutación/genética , Ubiquitina-Proteína Ligasas Nedd4 , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Retina/citología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Colículos Superiores/citología , Técnicas de Cultivo de Tejidos , Transducción Genética/métodos , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Xenopus , Proteínas de Xenopus
12.
Neuron ; 64(3): 355-366, 2009 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19914184

RESUMEN

Engrailed transcription factors regulate the expression of guidance cues that pattern retinal axon terminals in the dorsal midbrain. They also act directly to guide axon growth in vitro. We show here that an extracellular En gradient exists in the tectum along the anterior-posterior axis. Neutralizing extracellular Engrailed in vivo with antibodies expressed in the tectum causes temporal axons to map aberrantly to the posterior tectum in chick and Xenopus. Furthermore, posterior membranes from wild-type tecta incubated with anti-Engrailed antibodies or posterior membranes from Engrailed-1 knockout mice exhibit diminished repulsive activity for temporal axons. Since EphrinAs play a major role in anterior-posterior mapping, we tested whether Engrailed cooperates with EphrinA5 in vitro. We find that Engrailed restores full repulsion to axons given subthreshold doses of EphrinA5. Collectively, our results indicate that extracellular Engrailed contributes to retinotectal mapping in vivo by modulating the sensitivity of growth cones to EphrinA.


Asunto(s)
Axones/fisiología , Quimiotaxis/fisiología , Espacio Extracelular/metabolismo , Proteínas de Homeodominio/metabolismo , Retina/fisiología , Colículos Superiores/fisiología , Animales , Embrión de Pollo , Conos de Crecimiento/fisiología , Proteínas de Homeodominio/genética , Técnicas In Vitro , Ratones , Ratones Noqueados , Receptores de la Familia Eph/metabolismo , Retina/embriología , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/fisiología , Colículos Superiores/embriología , Colículos Superiores/crecimiento & desarrollo , Vías Visuales/embriología , Vías Visuales/crecimiento & desarrollo , Vías Visuales/fisiología , Xenopus
13.
Development ; 135(2): 333-42, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18077591

RESUMEN

Sphingosine 1-phosphate (S1P), a lysophospholipid, plays an important chemotactic role in the migration of lymphocytes and germ cells, and is known to regulate aspects of central nervous system development such as neurogenesis and neuronal migration. Its role in axon guidance, however, has not been examined. We show that sphingosine kinase 1, an enzyme that generates S1P, is expressed in areas surrounding the Xenopus retinal axon pathway, and that gain or loss of S1P function in vivo causes errors in axon navigation. Chemotropic assays reveal that S1P elicits fast repulsive responses in retinal growth cones. These responses require heparan sulfate, are sensitive to inhibitors of proteasomal degradation, and involve RhoA and LIM kinase activation. Together, the data identify downstream components that mediate S1P-induced growth cone responses and implicate S1P signalling in axon guidance.


Asunto(s)
Axones/metabolismo , Lisofosfolípidos/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Vías Visuales/embriología , Vías Visuales/metabolismo , Xenopus laevis/embriología , Animales , Axones/efectos de los fármacos , Axones/enzimología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/enzimología , Activación Enzimática/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/enzimología , Conos de Crecimiento/patología , Heparitina Sulfato/metabolismo , Humanos , Quinasas Lim/metabolismo , Lisofosfolípidos/farmacología , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Inhibidores de Proteasoma , Receptores de Lisoesfingolípidos/metabolismo , Retina/efectos de los fármacos , Retina/enzimología , Retina/patología , Transducción de Señal/efectos de los fármacos , Esfingosina/metabolismo , Esfingosina/farmacología , Vías Visuales/efectos de los fármacos , Vías Visuales/enzimología , Proteína de Unión al GTP rhoA/metabolismo
14.
Development ; 134(11): 2137-46, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17507414

RESUMEN

The Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins is required for filopodia formation in growth cones and plays a crucial role in guidance cue-induced remodeling of the actin cytoskeleton. In vivo studies with pharmacological inhibitors of actin polymerization have previously provided evidence for the view that filopodia are needed for growth cone navigation in the developing visual pathway. Here we have re-examined this issue using an alternative strategy to generate growth cones without filopodia in vivo by artificially targeting Xena/XVASP (Xenopus homologs of Ena/VASP) proteins to mitochondria in retinal ganglion cells (RGCs). We used the specific binding of the EVH1 domain of the Ena/VASP family of proteins with the ligand motif FP4 to sequester the protein at the mitochondria surface. RGCs with reduced function of Xena/XVASP proteins extended fewer axons out of the eye and possessed dynamic lamellipodial growth cones missing filopodia that advanced slowly in the optic tract. Surprisingly, despite lacking filopodia, the axons navigated along the optic pathway without obvious guidance errors, indicating that the Xena/XVASP family of proteins and filopodial protrusions are non-essential for pathfinding in retinal axons. However, depletion of Xena/XVASP proteins severely impaired the ability of growth cones to form branches within the optic tectum, suggesting that this protein family, and probably filopodia, plays a key role in establishing terminal arborizations.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Conos de Crecimiento/fisiología , Proteínas de Microfilamentos/metabolismo , Mitocondrias/metabolismo , Fosfoproteínas/metabolismo , Seudópodos/fisiología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Xenopus/embriología , Animales , Células Cultivadas , Proteínas Fluorescentes Verdes , Conos de Crecimiento/metabolismo , Microscopía por Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA