RESUMEN
The pleiotropic alarmin interleukin-33 (IL-33) drives type 1, type 2 and regulatory T-cell responses via its receptor ST2. Subset-specific differences in ST2 expression intensity and dynamics suggest that transcriptional regulation is key in orchestrating the context-dependent activity of IL-33-ST2 signaling in T-cell immunity. Here, we identify a previously unrecognized alternative promoter in mice and humans that is located far upstream of the curated ST2-coding gene and drives ST2 expression in type 1 immunity. Mice lacking this promoter exhibit a selective loss of ST2 expression in type 1- but not type 2-biased T cells, resulting in impaired expansion of cytotoxic T cells (CTLs) and T-helper 1 cells upon viral infection. T-cell-intrinsic IL-33 signaling via type 1 promoter-driven ST2 is critical to generate a clonally diverse population of antiviral short-lived effector CTLs. Thus, lineage-specific alternative promoter usage directs alarmin responsiveness in T-cell subsets and offers opportunities for immune cell-specific targeting of the IL-33-ST2 axis in infections and inflammatory diseases.
Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Animales , Humanos , Ratones , Alarminas , Antivirales , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Subgrupos de Linfocitos T/metabolismoRESUMEN
Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.
Asunto(s)
Antiinflamatorios , Glucocorticoides , Inflamación , Macrófagos , Mitocondrias , Succinatos , Animales , Femenino , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Carboxiliasas/metabolismo , Carboxiliasas/antagonistas & inhibidores , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Citocinas/inmunología , Citocinas/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Hidroliasas/deficiencia , Hidroliasas/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Activación Enzimática/efectos de los fármacosRESUMEN
Osteoarthritis (OA) is a joint disease featuring cartilage breakdown and chronic pain. Although age and joint trauma are prominently associated with OA occurrence, the trigger and signaling pathways propagating their pathogenic aspects are ill defined. Following long-term catabolic activity and traumatic cartilage breakdown, debris accumulates and can trigger Toll-like receptors (TLRs). Here we show that TLR2 stimulation suppressed the expression of matrix proteins and induced an inflammatory phenotype in human chondrocytes. Further, TLR2 stimulation impaired chondrocyte mitochondrial function, resulting in severely reduced adenosine triphosphate (ATP) production. RNA-sequencing analysis revealed that TLR2 stimulation upregulated nitric oxide synthase 2 (NOS2) expression and downregulated mitochondria function-associated genes. NOS inhibition partially restored the expression of these genes, and rescued mitochondrial function and ATP production. Correspondingly, Nos2-/- mice were protected from age-related OA development. Taken together, the TLR2-NOS axis promotes human chondrocyte dysfunction and murine OA development, and targeted interventions may provide therapeutic and preventive approaches in OA.
Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ratones , Animales , Condrocitos/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Osteoartritis/metabolismo , Receptores Toll-Like/metabolismo , Cartílago Articular/metabolismo , Células CultivadasRESUMEN
Rheumatoid arthritis and osteoarthritis are two related chronic diseases of the musculoskeletal system which are particularly pronounced in the region of joints and bones. Their pathogeneses are associated with chronic inflammation, which can disrupt homeostasis in bones and articular cartilage. Degradation products deriving from articular cartilage can contribute to the exacerbation of inflammation in the joint region. Mechanical stimuli and blood vessels also play a central role in both the regulation of bone growth as well as in the regeneration of bone tissue. Not only chronic inflammatory processes but also hormonal changes after menopause or undesired effects of glucocorticoid therapy have an influence on the balance between bone resorption and deposition, by promoting the former and reducing the latter. This results in decreased bone quality and, in some cases, considerable loss of bone or osteoporosis. An in-depth understanding of these processes at the molecular, cellular, and tissue level, as well as of the changes present in chronic inflammatory diseases, has been the focus of research at the German Rheumatism Research Center (Deutsches Rheuma-Forschungszentrum, DRFZ) since its foundation. Based on an improved understanding of these mechanisms, the DRFZ aims to develop improved prevention and treatment strategies with effects even in early disease stages.
Asunto(s)
Cartílago Articular , Osteoartritis , Femenino , Glucocorticoides , Humanos , Inflamación , Células del EstromaRESUMEN
Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H vessels differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus limit adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C, the major kinase of the secreted phosphoproteome, phosphorylates dentin matrix protein 1, previously identified as a key factor in bone mineralization. Thereupon, dentin matrix protein 1 is secreted from osteoblasts in a burst-like manner. Extracellular dentin matrix protein 1 inhibits vascular endothelial growth factor signalling by preventing phosphorylation of vascular endothelial growth factor receptor 2. Hence, secreted dentin matrix protein 1 transforms type H vessels into type L to limit bone growth activity and enhance bone mineralization. The discovered mechanism may suggest new options for the treatment of diseases characterised by aberrant activity of bone and vessels such as osteoarthritis, osteoporosis and osteosarcoma.
Asunto(s)
Calcificación Fisiológica , Neovascularización Fisiológica , Estrés Mecánico , Adolescente , Desarrollo Óseo , Matriz Ósea , Proteínas de la Matriz Extracelular , Humanos , Canales Iónicos , Morfogénesis , Fosfoproteínas , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial VascularRESUMEN
Functionalized living cells are regarded as effective tools in directed cell delivery and tissue engineering. Here we report the facile functionalization of viable isolated HeLa cells with superparamagnetic cationic nanoparticles via a single-step biocompatible process. Nanoparticles are localized on the cellular membranes and do not penetrate into the cytoplasm. The magnetically responsive cells are viable and able to colonize and grow on substrates. Magnetically facilitated microorganization of functionalized cells into viable living clusters is demonstrated. We believe that the technique described here may find a number of potential applications in cell-based therapies and in development of whole-cell biosensors.
Asunto(s)
Materiales Biocompatibles/química , Compuestos Férricos/química , Magnetismo , Nanopartículas/química , Técnicas Biosensibles , Cationes/química , Membrana Celular/metabolismo , Supervivencia Celular , Células Cultivadas , Citoplasma/metabolismo , Compuestos Férricos/síntesis química , Células HeLa , Humanos , Microscopía Fluorescente , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (Ð549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.
Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Portadores de Fármacos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Nanotubos/química , Compuestos de Amonio Cuaternario/farmacología , Actinas/química , Silicatos de Aluminio/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Arcilla , Dextrinas/química , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Preparaciones FarmacéuticasRESUMEN
Nanotechnology offers an unprecedented number of opportunities for biomedical research, utilizing the unusual functionalities of nanosized materials. Here we describe the recent advances in fabrication and utilization of nanoparticle-labelled cells. We present a brief overview of the most promising techniques, namely layer-by-layer polyelectrolyte assembly on cells and intracellular and extracellular labelling with magnetic nanoparticles. Several important practical application of nanofucntionalized cells, including tissue engineering and tumour therapy, are reviewed.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Ingeniería de Tejidos/métodos , Animales , Humanos , Nanoestructuras/uso terapéutico , NanotecnologíaRESUMEN
We report the magnetically-facilitated scaffold-free assembly of lung tissue mimicking two-layered multicellular clusters. Polymer-stabilized magnetic nanoparticles were deposited on surfaces of viable human cells (A549 and skin fibroblasts), allowing the formation of two-layered porous tissue prototypes.