Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Cancer ; 19(1): 248, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894168

RESUMEN

BACKGROUND: Garlic has been used for centuries for its flavour and health promoting properties that include protection against cancer. The vinyl disulfide-sulfoxide ajoene is one of the phytochemicals found in crushed cloves, hypothesised to act by S-thiolating reactive cysteines in target proteins. METHODS: Using our fluorescently labelled ajoene analogue called dansyl-ajoene, ajoene's protein targets in MDA-MB-231 breast cancer cells were tagged and separated by 2D electrophoresis. A predominant band was identified by MALDI-TOF MS/MS to be vimentin. Target validation experiments were performed using pure recombinant vimentin protein. Computational modelling of vimentin bound to ajoene was performed using Schrödinger and pKa calculations by Epik software. Cytotoxicity of ajoene in MDA-MB-231 and HeLa cells was measured by the MTT assay. The vimentin filament network was visualised in ajoene-treated and non-treated cells by immunofluorescence and vimentin protein expression was determined by immunoblot. The invasion and migration activity was measured by wound healing and transwell assays using wildtype cells and cells in which the vimentin protein had been transiently knocked down by siRNA or overexpressed. RESULTS: The dominant protein tagged by dansyl-ajoene was identified to be the 57 kDa protein vimentin. The vimentin target was validated to reveal that ajoene and dansyl-ajoene covalently bind to recombinant vimentin via a disulfide linkage at Cys-328. Computational modelling showed Cys-328 to be exposed at the termini of the vimentin tetramer. Treatment of MDA-MB-231 or HeLa cells with a non-cytotoxic concentration of ajoene caused the vimentin filament network to condense; and to increase vimentin protein expression. Ajoene inhibited the invasion and migration of both cancer cell lines which was found to be dependent on the presence of vimentin. Vimentin overexpression caused cells to become more migratory, an effect that was completely rescued by ajoene. CONCLUSIONS: The garlic-derived phytochemical ajoene targets and covalently modifies vimentin in cancer cells by S-thiolating Cys-328. This interaction results in the disruption of the vimentin filament network and contributes to the anti-metastatic activity of ajoene in cancer cells.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Disulfuros/farmacología , Ajo/química , Neoplasias/tratamiento farmacológico , Vimentina/metabolismo , Línea Celular Tumoral , Simulación por Computador , Disulfuros/metabolismo , Disulfuros/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Invasividad Neoplásica/prevención & control , Neoplasias/patología , Unión Proteica , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sulfóxidos , Vimentina/aislamiento & purificación
2.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31652937

RESUMEN

Postnatal muscle growth and exercise- or injury-induced regeneration are facilitated by myoblasts. Myoblasts respond to a variety of proteins such as cytokines that activate various signaling cascades. Cytokines belonging to the interleukin 6 superfamily (IL-6) influence myoblasts' proliferation but their effect on differentiation is still being researched. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is one of the key signaling pathways identified to be activated by IL-6. The aim of this study was to investigate myoblast fate as well as activation of JAK-STAT pathway at different physiologically relevant IL-6 concentrations (10 pg/mL; 100 pg/mL; 10 ng/mL) in the C2C12 mouse myoblast cell line and primary human myoblasts, isolated from eight young healthy male volunteers. Myoblasts' cell cycle progression, proliferation and differentiation in vitro were assessed. Low IL-6 concentrations facilitated cell cycle transition from the quiescence/Gap1 (G0/G1) to the synthesis (S-) phases. Low and medium IL-6 concentrations decreased the expression of myoblast determination protein 1 (MyoD) and myogenin and increased proliferating cell nuclear antigen (PCNA) expression. In contrast, high IL-6 concentration shifted a larger proportion of cells to the pro-differentiation G0/G1 phase of the cell cycle, substantiated by significant increases of both MyoD and myogenin expression and decreased PCNA expression. Low IL-6 concentration was responsible for prolonged JAK1 activation and increased suppressor of cytokine signaling 1 (SOCS1) protein expression. JAK-STAT inhibition abrogated IL-6-mediated C2C12 cell proliferation. In contrast, high IL-6 initially increased JAK1 activation but resulted in prolonged JAK2 activation and elevated SOCS3 protein expression. High IL-6 concentration decreased interleukin-6 receptor (IL-6R) expression 24 h after treatment whilst low IL-6 concentration increased IL-6 receptor (IL-6R) expression at the same time point. In conclusion, this study demonstrated that IL-6 has concentration- and time-dependent effects on both C2C12 mouse myoblasts and primary human myoblasts. Low IL-6 concentration induces proliferation whilst high IL-6 concentration induces differentiation. These effects are mediated by specific components of the JAK/STAT/SOCS pathway.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Interleucina-6/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Células Cultivadas , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Masculino , Ratones , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Tirfostinos/farmacología
3.
Int J Mol Sci ; 20(18)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540457

RESUMEN

The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, damaged and diseased tissues and organs can be regenerated or created using different configurations and combinations of extracellular matrix (ECM), cells, and inductive biomolecules. Regenerative medicine and tissue engineering can allow the improvement of patients' quality of life through availing novel treatment options. The coupling of regenerative medicine and tissue engineering with 3D printing, big data, and computational algorithms is revolutionizing the treatment of patients in a huge way. 3D bioprinting allows the proper placement of cells and ECMs, allowing the recapitulation of native microenvironments of tissues and organs. 3D bioprinting utilizes different bioinks made up of different formulations of ECM/biomaterials, biomolecules, and even cells. The choice of the bioink used during 3D bioprinting is very important as properties such as printability, compatibility, and physical strength influence the final construct printed. The extracellular matrix (ECM) provides both physical and mechanical microenvironment needed by cells to survive and proliferate. Decellularized ECM bioink contains biochemical cues from the original native ECM and also the right proportions of ECM proteins. Different techniques and characterization methods are used to derive bioinks from several tissues and organs and to evaluate their quality. This review discusses the uses of decellularized ECM bioinks and argues that they represent the most biomimetic bioinks available. In addition, we briefly discuss some polymer-based bioinks utilized in 3D bioprinting.


Asunto(s)
Bioimpresión/métodos , Matriz Extracelular/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Humanos , Polímeros/química , Impresión Tridimensional , Medicina Regenerativa/métodos
4.
Int J Mol Sci ; 19(6)2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29799486

RESUMEN

The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.


Asunto(s)
Productos Biológicos/análisis , Biología Computacional/métodos , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Plantas Medicinales/química , Inteligencia Artificial , Automatización de Laboratorios , Productos Biológicos/química , Simulación por Computador , Industria Farmacéutica , Humanos , Modelos Químicos , Fitoterapia/métodos , Robótica , Programas Informáticos
5.
Int J Mol Sci ; 19(10)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241395

RESUMEN

BACKGROUND: The functional interplay between tumor cells and their adjacent stroma has been suggested to play crucial roles in the initiation and progression of tumors and the effectiveness of chemotherapy. The extracellular matrix (ECM), a complex network of extracellular proteins, provides both physical and chemicals cues necessary for cell proliferation, survival, and migration. Understanding how ECM composition and biomechanical properties affect cancer progression and response to chemotherapeutic drugs is vital to the development of targeted treatments. METHODS: 3D cell-derived-ECMs and esophageal cancer cell lines were used as a model to investigate the effect of ECM proteins on esophageal cancer cell lines response to chemotherapeutics. Immunohistochemical and qRT-PCR evaluation of ECM proteins and integrin gene expression was done on clinical esophageal squamous cell carcinoma biopsies. Esophageal cancer cell lines (WHCO1, WHCO5, WHCO6, KYSE180, KYSE 450 and KYSE 520) were cultured on decellularised ECMs (fibroblasts-derived ECM; cancer cell-derived ECM; combinatorial-ECM) and treated with 0.1% Dimethyl sulfoxide (DMSO), 4.2 µM cisplatin, 3.5 µM 5-fluorouracil and 2.5 µM epirubicin for 24 h. Cell proliferation, cell cycle progression, colony formation, apoptosis, migration and activation of signaling pathways were used as our study endpoints. RESULTS: The expression of collagens, fibronectin and laminins was significantly increased in esophageal squamous cell carcinomas (ESCC) tumor samples compared to the corresponding normal tissue. Decellularised ECMs abrogated the effect of drugs on cancer cell cycling, proliferation and reduced drug induced apoptosis by 20⁻60% that of those plated on plastic. The mitogen-activated protein kinase-extracellular signal-regulated kinase (MEK-ERK) and phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) signaling pathways were upregulated in the presence of the ECMs. Furthermore, our data show that concomitant addition of chemotherapeutic drugs and the use of collagen- and fibronectin-deficient ECMs through siRNA inhibition synergistically increased cancer cell sensitivity to drugs by 30⁻50%, and reduced colony formation and cancer cell migration. CONCLUSION: Our study shows that ECM proteins play a key role in the response of cancer cells to chemotherapy and suggest that targeting ECM proteins can be an effective therapeutic strategy against chemoresistant tumors.


Asunto(s)
Carcinoma de Células Escamosas/patología , Resistencia a Antineoplásicos , Neoplasias Esofágicas/patología , Microambiente Tumoral , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/farmacología , Apoptosis , Carcinoma de Células Escamosas/tratamiento farmacológico , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colágeno/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Matriz Extracelular , Femenino , Fibronectinas/metabolismo , Perfilación de la Expresión Génica , Humanos , Laminina/metabolismo , Masculino , Persona de Mediana Edad , Transducción de Señal
6.
Molecules ; 23(4)2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29673198

RESUMEN

Background: Environmental pollution such as exposure to pro-carcinogens including benzo-α-pyrene is becoming a major problem globally. Moreover, the effects of benzo-α-pyrene (BaP) on drug pharmacokinetics, pharmacodynamics, and drug resistance warrant further investigation, especially in cancer outpatient chemotherapy where exposure to environmental pollutants might occur. Method: We report here on the effects of benzo-α-pyrene on esophageal cancer cells in vitro, alone, or in combination with chemotherapeutic drugs cisplatin, 5-flurouracil, or paclitaxel. As the study endpoints, we employed expression of proteins involved in cell proliferation, drug metabolism, apoptosis, cell cycle analysis, colony formation, migration, and signaling cascades in the WHCO1 esophageal cancer cell line after 24 h of treatment. Results: Benzo-α-pyrene had no significant effect on WHCO1 cancer cell proliferation but reversed the effect of chemotherapeutic drugs by reducing drug-induced cell death and apoptosis by 30−40% compared to drug-treated cells. The three drugs significantly reduced WHCO1 cell migration by 40−50% compared to control and BaP-treated cells. Combined exposure to drugs was associated with significantly increased apoptosis and reduced colony formation. Evaluation of survival signaling cascades showed that although the MEK-ERK and Akt pathways were activated in the presence of drugs, BaP was a stronger activator of the MEK-ERK and Akt pathways than the drugs. Conclusion: The present study suggest that BaP can reverse the effects of drugs on cancer cells via the activation of survival signaling pathways and upregulation of anti-apoptotic proteins such as Bcl-2 and Bcl-xL. Our data show that BaP contribute to the development of chemoresistant cancer cells.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Pirenos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Fluorouracilo/farmacología , Humanos , Paclitaxel/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
7.
Int J Mol Sci ; 18(7)2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28754000

RESUMEN

Chemoresistance is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Chemoresistance is influenced by genetic and epigenetic alterations which affect drug uptake, metabolism and export of drugs at the cellular levels. While most research has focused on tumor cell autonomous mechanisms of chemoresistance, the tumor microenvironment has emerged as a key player in the development of chemoresistance and in malignant progression, thereby influencing the development of novel therapies in clinical oncology. It is not surprising that the study of the tumor microenvironment is now considered to be as important as the study of tumor cells. Recent advances in technological and analytical methods, especially 'omics' technologies, has made it possible to identify specific targets in tumor cells and within the tumor microenvironment to eradicate cancer. Tumors need constant support from previously 'unsupportive' microenvironments. Novel therapeutic strategies that inhibit such microenvironmental support to tumor cells would reduce chemoresistance and tumor relapse. Such strategies can target stromal cells, proteins released by stromal cells and non-cellular components such as the extracellular matrix (ECM) within the tumor microenvironment. Novel in vitro tumor biology models that recapitulate the in vivo tumor microenvironment such as multicellular tumor spheroids, biomimetic scaffolds and tumor organoids are being developed and are increasing our understanding of cancer cell-microenvironment interactions. This review offers an analysis of recent developments on the role of the tumor microenvironment in the development of chemoresistance and the strategies to overcome microenvironment-mediated chemoresistance. We propose a systematic analysis of the relationship between tumor cells and their respective tumor microenvironments and our data show that, to survive, cancer cells interact closely with tumor microenvironment components such as mesenchymal stem cells and the extracellular matrix.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias/patología , Microambiente Tumoral , Supervivencia Celular , Epigénesis Genética , Matriz Extracelular/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Células Madre Mesenquimatosas/patología , Modelos Biológicos , Neoplasias/genética , Transducción de Señal
8.
Mol Carcinog ; 55(8): 1213-28, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26207910

RESUMEN

Ajoene is a natural allylsulfur compound found in crushed garlic that arrests growth and induces apoptosis in cancer cells. To gain mechanistic insights into the cytotoxicity of ajoene in cancer cells, two fluorescently labelled ajoene analogs with dansyl- (DP) and fluorescein- (FOX) tags were synthesized. The tagged ajoenes were found to retain their activity at inhibiting proliferation and inducing apoptosis in MDA-MB-231 human breast-cancer and WHCO1 human esophageal-cancer cells. Both tagged ajoenes localized to the endoplasmic reticulum (ER) in MDA-MB-231 cells as observed by live cell confocal laser scanning microscopy (CLSM) and confirmed by generating an MDA-MB-231 cell line expressing yellow fluorescent protein (YFP) in the ER. DP appears to S-thiolate multiple protein targets in MDA-MB-231 cells as observed by immunoblotting under non-reducing conditions only; and a competition assay demonstrated that DP and Z-ajoene in fact share the same target. Ajoene S-thiolation interfered with protein folding and led to an accumulation of misfolded protein aggregates and activated the unfolded protein response (UPR). Consistent with this mechanism, increased levels of GRP78 and total ubiquitinated proteins were observed; and an ER-folded protein, type-1 collagen, was tracked to the proteasome following ajoene treatment. The intracellular protein aggregates were observed by CLSM and transmission electron microscopy (TEM). This is the first time that ajoene has been shown to target protein folding in the ER of cancer cells. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Disulfuros/farmacología , Proteínas de Choque Térmico/metabolismo , Neoplasias/metabolismo , Extractos Vegetales/farmacología , Pliegue de Proteína/efectos de los fármacos , Apoptosis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Disulfuros/química , Retículo Endoplásmico/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Fluoresceína/química , Humanos , Microscopía Electrónica de Transmisión , Neoplasias/tratamiento farmacológico , Fosfatidilcolinas/química , Sulfóxidos , Ubiquitinación , Respuesta de Proteína Desplegada/efectos de los fármacos
9.
Int J Mol Sci ; 17(8)2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27527147

RESUMEN

Mesenchymal stromal/stem cells (MSCs) represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell-matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs) in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM) did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and ß1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4), SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and ß-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures.


Asunto(s)
Diferenciación Celular , Matriz Extracelular/fisiología , Células Madre Mesenquimatosas/fisiología , Tejido Adiposo Blanco/citología , Proliferación Celular , Forma de la Célula , Supervivencia Celular , Células Cultivadas , Senescencia Celular , Condrogénesis , Fibroblastos/metabolismo , Expresión Génica , Humanos
10.
Molecules ; 21(7)2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27399660

RESUMEN

This study evaluated the effects of Newbouldia laevis and Cassia abbreviata extracts on CYP450 enzyme activity. Recombinant CYP450 enzyme and fluorogenic substrates were used for evaluating inhibition, allowing the assessment of herb-drug interactions (HDI). Phytochemical fingerprinting was performed using UPLC-MS. The herbal extracts were risk ranked for HDI based on the IC50 values determined for each CYP enzyme. Newbouldia laevis inhibited CYP1A2, CYP2C9, and CYP2C19 enzyme activities with Ki of 2.84 µg/mL, 1.55 µg/mL, and 1.23 µg/mL, respectively. N. laevis exhibited a TDI (4.17) effect on CYP1A2 but not CYP2C9 and CYP2C19 enzyme activities. Cassia abbreviata inhibited CYP1A2, CYP2C9, and CYP2C19 enzyme activities showing a Ki of 4.86 µg/mL, 5.98 µg/mL, and 1.58 µg/mL, respectively. TDI potency assessment for Cassia abbreviata showed it as a potential TDI candidate (1.64) for CYP1A2 and CYP2C19 (1.72). UPLC-MS analysis showed that Newbouldia laevis and Cassia abbreviata possess polyphenols that likely give them their therapeutic properties; some of them are likely to be responsible for the observed inhibition. The observations made in this study suggest the potential for these herbal compounds to interact, especially when co-administered with other medications metabolized by these CYP450 enzymes.


Asunto(s)
Cassia/química , Inhibidores Enzimáticos del Citocromo P-450/química , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Lamiales/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos del Citocromo P-450/farmacocinética , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Interacciones de Hierba-Droga , Humanos , Concentración 50 Inhibidora , Cinética , Espectrometría de Masas , Estructura Molecular , Extractos Vegetales/farmacocinética , Distribución Tisular
11.
Molecules ; 21(2)2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26891286

RESUMEN

Highly active antiretroviral therapy (HAART) has greatly improved health parameters of HIV infected individuals. However, there are several challenges associated with the chronic nature of HAART administration. For populations in health transition, dual use of medicinal plant extracts and conventional medicine poses a significant challenge. There is need to evaluate interactions between commonly used medicinal plant extracts and antiretroviral drugs used against HIV/AIDS. Efavirenz (EFV) and nevirapine (NVP) are the major components of HAART both metabolized by CYP2B6, an enzyme that can potentially be inhibited or induced by compounds found in medicinal plant extracts. The purpose of this study was to evaluate the effects of extracts of selected commonly used medicinal plants on CYP2B6 enzyme activity. Recombinant human CYP2B6 was used to evaluate inhibition, allowing the assessment of herb-drug interactions (HDI) of medicinal plants Hyptis suaveolens, Myrothamnus flabellifolius, Launaea taraxacifolia, Boerhavia diffusa and Newbouldia laevis. The potential of these medicinal extracts to cause HDI was ranked accordingly for reversible inhibition and also classified as potential time-dependent inhibitor (TDI) candidates. The most potent inhibitor for CYP2B6 was Hyptis suaveolens extract (IC50 = 19.09 ± 1.16 µg/mL), followed by Myrothamnus flabellifolius extract (IC50 = 23.66 ± 4.86 µg/mL), Launaea taraxacifolia extract (IC50 = 33.87 ± 1.54 µg/mL), and Boerhavia diffusa extract (IC50 = 34.93 ± 1.06 µg/mL). Newbouldia laevis extract, however, exhibited weak inhibitory effects (IC50 = 100 ± 8.71 µg/mL) on CYP2B6. Launaea taraxacifolia exhibited a TDI (3.17) effect on CYP2B6 and showed a high concentration of known CYP450 inhibitory phenolic compounds, chlorogenic acid and caffeic acid. The implication for these observations is that drugs that are metabolized by CYP2B6 when co-administered with these herbal medicines and when adequate amounts of the extracts reach the liver, there is a high likelihood of standard doses affecting drug plasma concentrations which could lead to toxicity.


Asunto(s)
Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Alquinos , Terapia Antirretroviral Altamente Activa , Benzoxazinas/farmacología , Ciclopropanos , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Inhibidores del Citocromo P-450 CYP2B6/química , Inhibidores del Citocromo P-450 CYP2B6/farmacología , Interacciones de Hierba-Droga , Humanos , Magnoliopsida/química , Nevirapina/farmacología
12.
PLoS One ; 19(2): e0296511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306344

RESUMEN

Breast cancer responds variably to anticancer therapies, often leading to significant off-target effects. This study proposes that the variability in tumour responses and drug-induced adverse events is linked to the transcriptional profiles of cell surface receptors (CSRs) in breast tumours and normal tissues. We analysed multiple datasets to compare CSR expression in breast tumours with that in non-cancerous human tissues. Our findings correlate the drug responses of breast cancer cell lines with the expression levels of their targeted CSRs. Notably, we identified distinct differences in CSR expression between primary breast tumour subtypes and corresponding cell lines, which may influence drug response predictions. Additionally, we used clinical trial data to uncover associations between CSR gene expression in healthy tissues and the incidence of adverse drug reactions. This integrative approach facilitates the selection of optimal CSR targets for therapy, leveraging cell line dose-responses, CSR expression in normal tissues, and patient adverse event profiles.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Biología Computacional , Receptores de Superficie Celular , Aprendizaje Automático , Línea Celular Tumoral
13.
Biomimetics (Basel) ; 8(2)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37092398

RESUMEN

The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.

14.
Cancers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36672326

RESUMEN

Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review provides an updated summary of the role played by the tumor microenvironment (TME) components and hypoxia in tumorigenesis, and highlight various ways through which tumor cells reprogram normal cells into phenotypes that are pro-tumorigenic, including cancer associated- fibroblasts, -macrophages and -endothelial cells. Tumor cells secrete numerous factors leading to the transformation of a previously anti-tumorigenic environment into a pro-tumorigenic environment. Once formed, solid tumors continue to interact with various stromal cells, including local and infiltrating fibroblasts, macrophages, mesenchymal stem cells, endothelial cells, pericytes, and secreted factors and the ECM within the tumor microenvironment (TME). The TME is key to tumorigenesis, drug response and treatment outcome. Importantly, stromal cells and secreted factors can initially be anti-tumorigenic, but over time promote tumorigenesis and induce therapy resistance. To counter hypoxia, increased angiogenesis leads to the formation of new vascular networks in order to actively promote and sustain tumor growth via the supply of oxygen and nutrients, whilst removing metabolic waste. Angiogenic vascular network formation aid in tumor cell metastatic dissemination. Successful tumor treatment and novel drug development require the identification and therapeutic targeting of pro-tumorigenic components of the TME including cancer-associated- fibroblasts (CAFs) and -macrophages (CAMs), hypoxia, blocking ECM-receptor interactions, in addition to the targeting of tumor cells. The reprogramming of stromal cells and the immune response to be anti-tumorigenic is key to therapeutic success. Lastly, this review highlights potential TME- and hypoxia-centered therapies under investigation.

15.
PLoS One ; 18(12): e0296029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38117798

RESUMEN

Investigating the human genome is vital for identifying risk factors and devising effective therapies to combat genetic disorders and cancer. Despite the extensive knowledge of the "light genome", the poorly understood "dark genome" remains understudied. In this study, we integrated data from 20,412 protein-coding genes in Pharos and 8,395 patient-derived tumours from The Cancer Genome Atlas (TCGA) to examine the genetic and pharmacological dependencies in human cancers and their treatment implications. We discovered that dark genes exhibited high mutation rates in certain cancers, similar to light genes. By combining the drug response profiles of cancer cells with cell fitness post-CRISPR-mediated gene knockout, we identified the crucial vulnerabilities associated with both dark and light genes. Our analysis also revealed that tumours harbouring dark gene mutations displayed worse overall and disease-free survival rates than those without such mutations. Furthermore, dark gene expression levels significantly influenced patient survival outcomes. Our findings demonstrated a similar distribution of genetic and pharmacological dependencies across the light and dark genomes, suggesting that targeting the dark genome holds promise for cancer treatment. This study underscores the need for ongoing research on the dark genome to better comprehend the underlying mechanisms of cancer and develop more effective therapies.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Mutación , Genoma , Técnicas de Inactivación de Genes
16.
Int J Hypertens ; 2023: 9919677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38633331

RESUMEN

In Africa, the burden of hypertension has been rising at an alarming rate for the last two decades and is a major cause for cardiovascular disease (CVD) mortality and morbidity. Hypertension is characterised by elevated blood pressure (BP) ≥ 140/90 mmHg. Current hypertension guidelines recommend the use of antihypertensives belonging to the following classes: calcium channel blockers (CCB), angiotensin converting inhibitors (ACEI), angiotensin receptor blockers (ARB), diuretics, ß-blockers, and mineralocorticoid receptor antagonists (MRAs), to manage hypertension. Still, a considerable number of hypertensives in Africa have their BP uncontrolled due to poor drug response and remain at the risk of CVD events. Genetic factors are a major contributing factor, accounting for 20% to 80% of individual variability in therapy and poor response. Poor response to antihypertensive drug therapy is characterised by elevated BPs and occurrence of adverse drug reactions (ADRs). As a result, there have been numerous studies which have examined the role of genetic variation and its influence on antihypertensive drug response. These studies are predominantly carried out in non-African populations, including Europeans and Asians, with few or no Africans participating. It is important to note that the greatest genetic diversity is observed in African populations as well as the highest prevalence of hypertension. As a result, this warrants a need to focus on how genetic variation affects response to therapeutic interventions used to manage hypertension in African populations. In this paper, we discuss the implications of genetic diversity in CYP11B2, GRK4, NEDD4L, NPPA, SCNN1B, UMOD, CYP411, WNK, CYP3A4/5, ACE, ADBR1/2, GNB3, NOS3, B2, BEST3, SLC25A31, LRRC15 genes, and chromosome 12q loci on hypertension susceptibility and response to antihypertensive therapy. We show that African populations are poorly explored genetically, and for the few characterised genes, they exhibit qualitative and quantitative differences in the profile of pharmacogene variants when compared to other ethnic groups. We conclude by proposing prioritization of pharmacogenetics research in Africa and possible adoption of pharmacogenetic-guided therapies for hypertension in African patients. Finally, we outline the implications, challenges, and opportunities these studies present for populations of non-European descent.

17.
IUBMB Life ; 64(1): 87-98, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22131293

RESUMEN

The extracellular matrix (ECM) provides the microenvironment that is pivotal for cell growth, motility, attachment, and differentiation. Advances in cell culture techniques have led to the development of cell-derived ECM model systems that are more reflective of the in vivo architecture of the ECM in tissue. In this study, a fibroblast-derived ECM (fd-ECM) was used to study the feedback regulation of type I collagen synthesis in fibroblasts. Fibroblasts plated on a preformed fd-ECM showed a significant decrease in the production of type I collagen and pro-α2(1) collagen mRNA compared to cells grown in the absence of a matrix. Function-blocking antibodies showed that this downregulation of type I collagen gene expression is mediated via α2ß1 integrin. The use of several kinase inhibitors and a dominant negative ras construct (N17Ras) showed that the matrix-mediated downregulation of COL1A2 occurs via Ras-dependent activation of the MEK/ERK signaling pathway. Deletion analysis of the COL1A2 promoter implicated the region between -375 and -107 as containing a potential matrix responsive element. The use of Sp1 siRNA demonstrated that Sp1 is an important mediator of this feedback inhibition. This study provides some new insights into the feedback regulation of COL1A2 gene expression.


Asunto(s)
Colágeno Tipo I/genética , Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Sitios de Unión , Línea Celular , Colágeno Tipo I/metabolismo , Regulación hacia Abajo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Integrina alfa2beta1/metabolismo , Integrina alfa3beta1/metabolismo , Regiones Promotoras Genéticas , Elementos de Respuesta , Factor de Transcripción Sp1/metabolismo , Proteínas ras/metabolismo
18.
Biomater Res ; 26(1): 80, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517896

RESUMEN

Silicone breast implants are commonly used for cosmetic and oncologic surgical indications owing to their inertness and being nontoxic. However, complications including capsular contracture and anaplastic large cell lymphoma have been associated with certain breast implant surfaces over time. Novel implant surfaces and modifications of existing ones can directly impact cell-surface interactions and enhance biocompatibility and integration. The extent of foreign body response induced by breast implants influence implant success and integration into the body. This review highlights recent advances in breast implant surface technologies including modifications of implant surface topography and chemistry and effects on protein adsorption, and cell adhesion. A comprehensive online literature search was performed for relevant articles using the following keywords silicone breast implants, foreign body response, cell adhesion, protein adsorption, and cell-surface interaction. Properties of silicone breast implants impacting cell-material interactions including surface roughness, wettability, and stiffness, are discussed. Recent studies highlighting both silicone implant surface activation strategies and modifications to enhance biocompatibility in order to prevent capsular contracture formation and development of anaplastic large cell lymphoma are presented. Overall, breast implant surface modifications are being extensively investigated in order to improve implant biocompatibility to cater for increased demand for both cosmetic and oncologic surgeries.

19.
OMICS ; 25(7): 417-430, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34191612

RESUMEN

Many cellular functions important for solid tumor initiation and progression are mediated by members of the integrin family, a diverse family of cell attachment receptors. With recent studies emphasizing the role of the tumor microenvironment (TME) in tumor initiation and progression, it is not surprising that considerable attention is being paid to integrins. Several integrin antagonists are under clinical trials, with many demonstrating promising activity in patients with different cancers. A deeper knowledge of the functions of integrins within the TME is still required and might lead to better inhibitors being discovered. Integrin expression is commonly dysregulated in many tumors with integrins playing key roles in signaling as well as promotion of tumor cell invasion and migration. Integrins also play a major role in adhesion of circulating tumor cells to new sites and the resulting formation of secondary tumors. Furthermore, integrins have demonstrated the ability to promoting stem cell-like properties in tumor cells as well as drug resistance. Anti-integrin therapies rely heavily on the doses or concentrations used as these determine whether the drugs act as antagonists or as integrin agonists. This expert review offers the latest synthesis in terms of the current knowledge of integrins functions within the TME and as potential molecular targets for cancer therapeutics innovation.


Asunto(s)
Integrinas , Neoplasias , Humanos , Integrinas/genética , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Transducción de Señal , Microambiente Tumoral
20.
OMICS ; 25(6): 342-357, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34115524

RESUMEN

Early cell biology reports demonstrated the presence of cells with stem-like properties in bone marrow, with both hematopoietic and mesenchymal lineages. Over the years, various investigations have purified and characterized mesenchymal stromal/stem cells (MSCs) from different human tissues as cells with multilineage differentiation potential under the appropriate conditions. Due to their appealing characteristics and versatile potentials, MSCs are leveraged in many applications in medicine such as oncology, bioprinting, and as recent as therapeutics discovery and innovation for COVID-19. To date, studies indicate that MSCs have varied differentiation capabilities into different cell types, and demonstrate immunomodulating and anti-inflammatory properties. Different microenvironments or niche for MSCs and their resulting heterogeneity may influence attendant cellular behavior and differentiation capacity. The potential clinical applications of MSCs and exosomes derived from these cells have led to an avalanche of research reports on their properties and hundreds of clinical trials being undertaken. There is ample reason to think, as discussed in this expert review that the future looks bright and promising for MSC research, with many clinical trials under way to ascertain their clinical utility. This review provides a synthesis of the latest advances and trends in MSC research to allow for broad and critically informed use of MSCs. Early observations of the presence of these cells in the bone marrow and their remarkable differentiation capabilities and immunomodulation are also presented.


Asunto(s)
Diferenciación Celular , Inmunomodulación , Células Madre Mesenquimatosas/inmunología , Humanos , Células Madre Mesenquimatosas/fisiología , Medicina Regenerativa , Nicho de Células Madre , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA