Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 344: 118443, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37354593

RESUMEN

Precipitation, evapotranspiration (ET), waste tonnage, landfill gas (LFG), and leachate data were aggregated from public sources to perform a 5-10 year water balance and estimate the contributions of three water sources (precipitation, incoming waste, and leachate recycling) for 36 active municipal solid waste (MSW) landfills in Ohio, USA. Uniquely, the water balance incorporated waste decomposition, using gas collection data to inform mass loss from biodegradation. Moisture contents of 20-30% for incoming waste indicate that entrained water is the largest source of landfill moisture. Infiltration of precipitation into the landfill after ET was the second largest source. Even at facilities where a majority of the leachate generated was recirculated, it did not significantly affect the moisture content in that year. Using the water balance approach, it appears leachate recirculation is unlikely to increase moisture content above 40% by mass, a regulatory threshold in the US, which would impose stricter air pollution control requirements. However, poor stormwater management could easily allow for "bioreactor" conditions to develop. The calculated landfill moisture content was significantly affected by the assumed runoff coefficient (CRO) parameter. CRO values below 20% and above 50% produced unrealistically high or low moisture contents, respectively. This approach can assist operators and regulators in understanding the contribution of different sources to a landfill's moisture profile and avoid future operational problems.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Residuos Sólidos/análisis , Contaminantes Químicos del Agua/análisis , Instalaciones de Eliminación de Residuos , Reactores Biológicos , Agua/análisis
2.
Drug Metab Dispos ; 50(9): 1151-1160, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35790245

RESUMEN

Molnupiravir is one of the two coronavirus disease 2019 (COVID-19) oral drugs that were recently granted the emergency use authorization by the Food and Drug Administration (FDA). Molnupiravir is an ester and requires hydrolysis to exert antiviral activity. Carboxylesterases constitute a class of hydrolases with high catalytic efficiency. Humans express two major carboxylesterases (CES1 and CES2) that differ in substrate specificity. Based on the structural characteristics of molnupiravir, this study was performed to test the hypothesis that molnupiravir is preferably hydrolyzed by CES2. Several complementary approaches were used to test this hypothesis. As many as 24 individual human liver samples were tested and the hydrolysis of molnupiravir was significantly correlated with the level of CES2 but not CES1. Microsomes from the intestine, kidney, and liver, but not lung, all rapidly hydrolyzed molnupiravir and the magnitude of hydrolysis was related closely to the level of CES2 expression among these organs. Importantly, recombinant CES2 but not CES1 hydrolyzed molnupiravir, collectively establishing that molnupiravir is a CES2-selective substrate. In addition, several CES2 polymorphic variants (e.g., R180H) differed from the wild-type CES2 in the hydrolysis of molnupiravir. Molecular docking revealed that wild-type CES2 and its variant R180H used different sets of amino acids to interact with molnupiravir. Furthermore, molnupiravir hydrolysis was significantly inhibited by remdesivir, the first COVID-19 drug granted the full approval by the FDA. The results presented raise the possibility that CES2 expression and genetic variation may impact therapeutic efficacy in clinical situations and warrants further investigation. SIGNIFICANCE STATEMENT: COVID-19 remains a global health crisis, and molnupiravir is one of the two recently approved oral COVID-19 therapeutics. In this study, we have shown that molnupiravir is hydrolytically activated by CES2, a major hydrolase whose activity is impacted by genetic polymorphic variants, disease mediators, and many potentially coadministered medicines. These results presented raise the possibility that CES2 expression and genetic variation may impact therapeutic efficacy in clinical situations and warrants further investigation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Carboxilesterasa/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Citidina/análogos & derivados , Interacciones Farmacológicas , Humanos , Hidrólisis , Hidroxilaminas , Simulación del Acoplamiento Molecular , Preparaciones Farmacéuticas/metabolismo , Polimorfismo Genético
3.
Blood ; 129(19): 2680-2692, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28292947

RESUMEN

A single subcutaneous (SC) injection of plerixafor results in rapid mobilization of hematopoietic progenitors, but fails to mobilize 33% of normal allogeneic sibling donors in 1 apheresis. We hypothesized that changing the route of administration of plerixafor from SC to IV may overcome the low stem cell yields and allow collection in 1 day. A phase 1 trial followed by a phase 2 efficacy trial was conducted in allogeneic sibling donors. The optimal dose of IV plerixafor was determined to be 0.32 mg/kg. The primary outcome of reducing the failure to collect ≥2 × 106 CD34+/kg recipient weight in 1 apheresis collection to ≤10% was not reached. The failure rate was 34%. Studies evaluating the stem cell phenotype and gene expression revealed a novel plasmacytoid dendritic cell precursor preferentially mobilized by plerixafor with high interferon-α producing ability. The observed cytomegalovirus (CMV) viremia rate for patients at risk was low (15%), as were the rates of acute grade 2-4 graft-versus-host disease (GVHD) (21%). Day 100 treatment related mortality was low (3%). In conclusion, plerixafor results in rapid stem cell mobilization regardless of route of administration and resulted in novel cellular composition of the graft and favorable recipient outcomes. These trials were registered at clinicaltrials.gov as #NCT00241358 and #NCT00914849.


Asunto(s)
Movilización de Célula Madre Hematopoyética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Compuestos Heterocíclicos/farmacología , Células Madre de Sangre Periférica/efectos de los fármacos , Administración Intravenosa , Adulto , Anciano , Antígenos CD34/análisis , Bencilaminas , Eliminación de Componentes Sanguíneos , Ciclamas , Femenino , Enfermedad Injerto contra Huésped/etiología , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/farmacología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Compuestos Heterocíclicos/administración & dosificación , Compuestos Heterocíclicos/farmacocinética , Humanos , Masculino , Persona de Mediana Edad , Células Madre de Sangre Periférica/citología , Donantes de Tejidos , Transcriptoma/efectos de los fármacos , Trasplante Homólogo/efectos adversos , Trasplante Homólogo/métodos
4.
Blood ; 127(1): 122-31, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26531164

RESUMEN

T-cell-directed killing of tumor cells using bispecific antibodies is a promising approach for the treatment of hematologic malignancies. Here we describe our preclinical work with a dual-affinity retargeting (DART) molecule generated from antibodies to CD3 and CD123, designed to redirect T cells against acute myeloid leukemia blasts. The CD3×CD123 DART (also referred to as MGD006/S80880) consists of 2 independent polypeptides, each composed of the VH of 1 antibody in tandem with the VL of the other antibody. The target antigen CD123 (interleukin 3RA) is highly and differentially expressed in acute myeloid leukemia (AML) blasts compared with normal hematopoietic stem and progenitor cells. In this study we demonstrate that the CD3×CD123 DART binds to both human CD3 and CD123 to mediate target-effector cell association, T-cell activation, proliferation, and receptor diversification. The CD3×CD123 DART also induces a dose-dependent killing of AML cell lines and primary AML blasts in vitro and in vivo. These results provide the basis for testing the CD3×CD123 DART in the treatment of patients with CD123(+) AML.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Apoptosis , Complejo CD3/inmunología , Subunidad alfa del Receptor de Interleucina-3/inmunología , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Linfocitos T/inmunología , Animales , Complejo CD3/metabolismo , Proliferación Celular , Citometría de Flujo , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T/genética , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas para Inmunoenzimas , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Activación de Linfocitos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Proc Natl Acad Sci U S A ; 111(41): E4376-85, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25261551

RESUMEN

Transcellular propagation of protein aggregates, or proteopathic seeds, may drive the progression of neurodegenerative diseases in a prion-like manner. In tauopathies such as Alzheimer's disease, this model predicts that tau seeds propagate pathology through the brain via cell-cell transfer in neural networks. The critical role of tau seeding activity is untested, however. It is unknown whether seeding anticipates and correlates with subsequent development of pathology as predicted for a causal agent. One major limitation has been the lack of a robust assay to measure proteopathic seeding activity in biological specimens. We engineered an ultrasensitive, specific, and facile FRET-based flow cytometry biosensor assay based on expression of tau or synuclein fusions to CFP and YFP, and confirmed its sensitivity and specificity to tau (∼ 300 fM) and synuclein (∼ 300 pM) fibrils. This assay readily discriminates Alzheimer's disease vs. Huntington's disease and aged control brains. We then carried out a detailed time-course study in P301S tauopathy mice, comparing seeding activity versus histological markers of tau pathology, including MC1, AT8, PG5, and Thioflavin S. We detected robust seeding activity at 1.5 mo, >1 mo before the earliest histopathological stain. Proteopathic tau seeding is thus an early and robust marker of tauopathy, suggesting a proximal role for tau seeds in neurodegeneration.


Asunto(s)
Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Biomarcadores/metabolismo , Técnicas Biosensibles , Células Cultivadas , Modelos Animales de Enfermedad , Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Ratones Transgénicos , Proteínas Mutantes/metabolismo , Unión Proteica
6.
PLoS Genet ; 10(7): e1004462, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25010716

RESUMEN

Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.


Asunto(s)
Evolución Clonal/genética , Células Clonales , Leucemia Mieloide Aguda/genética , Análisis de la Célula Individual , Adulto , Anciano , Línea Celular Tumoral , Femenino , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Polimorfismo de Nucleótido Simple
7.
N Engl J Med ; 366(12): 1090-8, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22417201

RESUMEN

BACKGROUND: The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood. METHODS: We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations. RESULTS: Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene. CONCLUSIONS: Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.).


Asunto(s)
Células de la Médula Ósea/patología , Transformación Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Mutación , Síndromes Mielodisplásicos/genética , Adolescente , Adulto , Células Clonales , Genoma Humano , Humanos , Leucemia Mieloide Aguda/etiología , Persona de Mediana Edad , Síndromes Mielodisplásicos/complicaciones , Análisis de Secuencia por Matrices de Oligonucleótidos , Piel , Adulto Joven
8.
Cytometry A ; 87(5): 419-27, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25808737

RESUMEN

In vivo optical imaging with near-infrared (NIR) probes is an established method of diagnostics in preclinical and clinical studies. However, the specificities of these probes are difficult to validate ex vivo due to the lack of NIR flow cytometry. To address this limitation, we modified a flow cytometer to include an additional NIR channel using a 752 nm laser line. The flow cytometry system was tested using NIR microspheres and cell lines labeled with a combination of visible range and NIR fluorescent dyes. The approach was verified in vivo in mice evaluated for immune response in lungs after intratracheal delivery of the NIR contrast agent. Flow cytometry of cells obtained from the lung bronchoalveolar lavage demonstrated that the NIR dye was taken up by pulmonary macrophages as early as 4-h post-injection. This combination of optical imaging with NIR flow cytometry extends the capability of imaging and enables complementation of in vivo imaging with cell-specific studies.


Asunto(s)
Medios de Contraste/administración & dosificación , Diagnóstico por Imagen/métodos , Citometría de Flujo/métodos , Pulmón/citología , Animales , Ratones , Espectroscopía Infrarroja Corta
10.
Waste Manag ; 171: 628-633, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37844491

RESUMEN

Elevated temperature landfills (ETLFs) are municipal solid waste (MSW) landfills that have been impacted by subsurface exothermic reactions (SERs) and display unusual gas and leachate composition. Leachate quantity and quality data were analyzed to identify indicators of a SER at an ETLF in Ohio, USA. ETLF leachate generation increased from 2.04 to 14.4 m3/hectare-day (218 to 1,539 gallons/acre-day), peaking 16 months after the reaction was first noticed. The leachate generation rate for this ETLF remains about two times greater than the average Ohio MSW landfill. Several general parameters such as pH, electrical conductivity (EC), and total dissolved solids (TDS) remain impacted 5 years later. Similarly, metals such as arsenic, iron, calcium, potassium, and magnesium have increased in concentration. Volatile organic compounds (VOCs) behavior was less consistent as a group of chemicals. Increases of VOCs such as acetone, benzene, and methyl ethyl ketone (MEK) also increased. Importantly, in one year, benzene exceeded its toxicity characteristic threshold meaning the leachate was a hazardous waste, substantially increasing treatment and disposal costs. It is not clear if the VOCs are produced directly by the SER or if they are an indicator that microbial processes -which would otherwise consume them- have been disrupted. ETLFs likely do not all undergo the same exothermic reaction(s) and, unlike the analysis of landfill gas composition, temporal changes in leachate constituents' concentrations may be more important than comparing to absolute values.

11.
Data Brief ; 47: 108961, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36860412

RESUMEN

This data brief presents leachate disposal and management data for 43 active or closed municipal solid waste (MSW) landfills and planar surface areas for 40 of those landfills in Ohio, USA. Data were extracted from publicly available Annual Operational Reports from the Ohio Environmental Protection Agency (Ohio EPA) and consolidated into a digital dataset of two delimited text files. A total of 9,985 data points represent monthly leachate disposal totals, arranged by management type and by landfill. Leachate management data for some landfills extend from 1988-2020 but are mostly limited to 2010-2020. Annual planar surface areas were identified from topographic maps in the annual reports. A total of 610 data points were created for the annual surface area dataset. This dataset aggregates and organizes the information, allowing for accessibility and increased application to engineering analysis and research projects.

12.
Waste Manag ; 165: 83-93, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37087787

RESUMEN

Landfill gas (LFG) wellhead data were compared to understand the range of observations due to unique conditions at five elevated temperature landfills (ETLFs) in the U.S. Correlations of the primary gas ratio, CH4:CO2, show distinct compositional indicators for (1) typical operation, (2) subsurface exothermic reactions (SERs), (3) high moisture content, and (4) air intrusion that can help operators and regulators diagnose conditions across gas extraction wells. ETLFs A, B, D, and E showed similar trends, such as decreasing CH4 and increasing CO2, CO, and H2 that have been previously described. ETLF C uniquely exhibited elevated CH4 and temperatures simultaneously due to carbonation (i.e., CO2 consumption) of a steel slag which was used as alternative daily cover (ADC). At the maximum gas well temperature, T = 82 °C/180 °F, CH4 and CO2 concentrations were 47% and 28%, respectively. At ETLFs A, B, and E, H2 > 50% were regularly observed in affected gas wells for several years. At the five ETLFs, maximum CO concentrations ranged from 1400-16,000 ppmv. Like the analysis of CH4:CO2, it is hypothesized here that H2 (%):CO (ppmv) may infer the types of waste that are thermally degrading. Co-disposal of industrial wastes and MSW and the use of potentially reactive ADCs should remain an important consideration for landfill operators and regulators because of their potential long-term impacts to LFG quality.


Asunto(s)
Dióxido de Carbono , Eliminación de Residuos , Dióxido de Carbono/análisis , Temperatura , Instalaciones de Eliminación de Residuos , Residuos Industriales/análisis , Acero , Metano/análisis
13.
Curr Drug Metab ; 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36515038

RESUMEN

BACKGROUND: Irinotecan is widely used to treat various types of solid and metastatic cancer. It is an ester prodrug and its hydrolytic metabolite (SN-38) exerts potent anticancer activity. Irinotecan is hydrolyzed primarily by carboxylesterase-2 (CES2), a hydrolase abundantly present in the intestine such as the duodenum. We have identified several potent and covalent CES2 inhibi¬tors such as remdesivir and sofosbuvir. Remdesivir is the first small molecule drug approved for COVID-19, whereas sofosbuvir is a paradigm-shift medicine for hepatitis C viral infection. Irinotecan is generally well-tolerated but associated with severe/life-threatening diarrhea due to intestinal accu¬¬mula¬tion of SN-38. OBJECTIVE: This study was to test the hypothesis that remdesivir and sofosbuvir protect against irinotecan-induced epithelial injury associated with gastrointestinal toxicity. METHODS: To test this hypothesis, formation of organoids derived from mouse duodenal crypts, a robust cellular model for intestinal regeneration, was induced in the presence or absence of irinotecan +/- pretreatment with a CES2 drug inhibitor. RESULTS: Irinotecan profoundly inhibited the formation of intestinal organoids and the magnitude of the inhibition was greater with female crypts than their male counterparts. Consistently, crypts from female mice had significantly higher hydrolytic activity toward irinotecan. Critically, remdesivir and sofosbuvir both reduced irinotecan hydrolysis and reversed irinotecan-reduced formation of organoids. Human duodenal samples robustly hydrolyzed irinotecan, stable CES2 transfection induced cytotoxicity and the cytotoxicity was reduced by CES2 drug inhibitor. CONCLUSION: These findings establish a therapeutic rationale to reduce irinotecan-gastrointestinal injury and serve as a cellular foundation to develop oral formulations of irinotecan with high safety.

14.
Dev Cell ; 10(4): 497-508, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16580994

RESUMEN

Cell migration within a natural context is tightly controlled, often by specific transcription factors. However, the switch from stationary to migratory behavior is poorly understood. Border cells perform a spatially and temporally controlled invasive migration during Drosophila oogenesis. Slbo, a C/EBP family transcriptional activator, is required for them to become migratory. We purified wild-type and slbo mutant border cells as well as nonmigratory follicle cells and performed comparative whole-genome expression profiling, followed by functional tests of the contributions of identified targets to migration. About 300 genes were significantly upregulated in border cells, many dependent on Slbo. Among these, the microtubule regulator Stathmin was strongly upregulated and was required for normal migration. Actin cytoskeleton regulators were also induced, including, surprisingly, a large cluster of "muscle-specific" genes. We conclude that Slbo induces multiple cytoskeletal effectors, and that each contributes to the behavioral changes in border cells.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/fisiología , Movimiento Celular/fisiología , Proteínas de Drosophila/fisiología , Perfilación de la Expresión Génica , Oogénesis/fisiología , Ovario/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas del Citoesqueleto/fisiología , Drosophila , Proteínas de Drosophila/genética , Femenino , Oogénesis/genética , Ovario/citología , Ovario/metabolismo , Estatmina/fisiología , Factores de Transcripción/genética , Regulación hacia Arriba
15.
J Clin Invest ; 118(3): 946-55, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18292815

RESUMEN

A fundamental property of leukemic stem cells is clonal dominance of the bone marrow microenvironment. Truncation mutations of CSF3R, which encodes the G-CSF receptor (G-CSFR), are implicated in leukemic progression in patients with severe congenital neutropenia. Here we show that expression of a truncated mutant Csf3r in mice confers a strong clonal advantage at the HSC level that is dependent upon exogenous G-CSF. G-CSF-induced proliferation, phosphorylation of Stat5, and transcription of Stat5 target genes were increased in HSCs isolated from mice expressing the mutant Csf3r. Conversely, the proliferative advantage conferred by the mutant Csf3r was abrogated in myeloid progenitors lacking both Stat5A and Stat5B, and HSC function was reduced in mice expressing a truncated mutant Csf3r engineered to have impaired Stat5 activation. These data indicate that in mice, inappropriate Stat5 activation plays a key role in establishing clonal dominance by stem cells expressing mutant Csf3r.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Mutación , Receptores de Factor Estimulante de Colonias de Granulocito/genética , Factor de Transcripción STAT5/fisiología , Animales , Proliferación Celular/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos/farmacología , Ratones , Ratones Endogámicos C57BL , Neutropenia/congénito , Factor de Transcripción STAT3/fisiología
16.
Fundam Clin Pharmacol ; 35(2): 432-434, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33369768

RESUMEN

Remdesivir was recently approved to treat COVID-19. While this antiviral agent delivers clinical benefits, several safety concerns in many cases have been raised. This study reports that remdesivir at nanomolar concentrations inhibits carboxylesterase-2 (CES2) through covalent modifications. CES2 is a major drug-metabolizing enzyme. The combination of high potency with irreversible inhibition concludes that cautions must be exercised when remdesivir is used along with drugs hydrolyzed by CES2.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Carboxilesterasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Adenosina Monofosfato/efectos adversos , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/efectos adversos , Alanina/farmacología , Alanina/uso terapéutico , Antivirales/efectos adversos , Antivirales/uso terapéutico , Carboxilesterasa/metabolismo , Interacciones Farmacológicas , Humanos , Microsomas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Tenofovir/metabolismo , Tratamiento Farmacológico de COVID-19
17.
Leuk Lymphoma ; 62(6): 1441-1449, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33467957

RESUMEN

Interactions between the bone marrow microenvironment and MDS tumor clones play a role in pathogenesis and response to treatment. We hypothesized G-CSF and plerixafor may enhance sensitivity to azacitidine in MDS. Twenty-eight patients with MDS were treated with plerixafor, G-CSF and azacitidine with a standard 3 + 3 design. Subjects received G-CSF 10 mcg/kg D1-D8, plerixafor D4-D8, and azacitidine 75 mg/m2 D4-D8, but the trial was amended to reduce G-CSF dose to 5 mcg/kg for 5 days after 2 patients had significant leukocytosis. Plerixafor was dose escalated to 560 mcg/kg/day without dose limiting toxicity. Two complete responses and 6 marrow responses were seen for an overall response rate (ORR) of 36% in evaluable patients, and ORR of 53% in patients receiving the triplet. Evidence of mobilization correlated with a higher ORR, 60% vs. 17%. Plerixafor, G-CSF and azacitidine appears tolerable when given over 5 days and has encouraging response rates.KEY POINTSPlerixafor and G-CSF can be safely combined with azacitidine for 5 days in patients with MDS.The overall response rate of 53% for evaluable patients with this regimen is higher than expected and more responses were seen in patients with blast mobilization.


Asunto(s)
Compuestos Heterocíclicos , Síndromes Mielodisplásicos , Azacitidina/efectos adversos , Bencilaminas , Ciclamas , Factor Estimulante de Colonias de Granulocitos , Movilización de Célula Madre Hematopoyética , Compuestos Heterocíclicos/efectos adversos , Humanos , Síndromes Mielodisplásicos/tratamiento farmacológico
18.
Stem Cells ; 26(3): 611-20, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18055447

RESUMEN

Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of preclinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII mice, we characterized the distribution of lineage-depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase (ALDH) activity with CD133 coexpression. ALDH(hi) or ALDH(hi)CD133+ cells produced robust hematopoietic reconstitution and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that coexpressed human leukocyte antigen (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues, including islet and ductal regions of mouse pancreata. In contrast, variable phenotypes were detected in the chimeric liver, with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels and CD45-/HLA- cells with diluted GUSB expression predominant in the liver parenchyma. However, true nonhematopoietic human (HLA+/CD45-) cells were rarely detected in other peripheral tissues, suggesting that these GUSB+/HLA-/CD45- cells in the liver were a result of downregulated human surface marker expression in vivo, not widespread seeding of nonhematopoietic cells. However, relying solely on continued expression of cell surface markers, as used in traditional xenotransplantation models, may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes, indicating that these adult progenitor cells should be explored in transplantation models of tissue damage.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Sistema Hematopoyético/citología , Trasplante de Células Madre , Células Madre/enzimología , Animales , Biomarcadores/metabolismo , Separación Celular , Citometría de Flujo , Glucuronidasa/metabolismo , Humanos , Islotes Pancreáticos/citología , Hígado/citología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mucopolisacaridosis VII/patología , Donantes de Tejidos
19.
Sci Rep ; 7: 41819, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28150730

RESUMEN

Validation of imaging contrast agents, such as fluorescently labeled imaging antibodies, has been recognized as a critical challenge in clinical and preclinical studies. As the number of applications for imaging antibodies grows, these materials are increasingly being subjected to careful scrutiny. Antibody fluorescent brightness is one of the key parameters that is of critical importance. Direct measurements of the brightness with common spectroscopy methods are challenging, because the fluorescent properties of the imaging antibodies are highly sensitive to the methods of conjugation, degree of labeling, and contamination with free dyes. Traditional methods rely on cell-based assays that lack reproducibility and accuracy. In this manuscript, we present a novel and general approach for measuring the brightness using antibody-avid polystyrene beads and flow cytometry. As compared to a cell-based method, the described technique is rapid, quantitative, and highly reproducible. The proposed method requires less than ten microgram of sample and is applicable for optimizing synthetic conjugation procedures, testing commercial imaging antibodies, and performing high-throughput validation of conjugation procedures.


Asunto(s)
Sistema Libre de Células , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes , Mediciones Luminiscentes , Coloración y Etiquetado , Citometría de Flujo , Técnica del Anticuerpo Fluorescente/métodos , Colorantes Fluorescentes/química , Humanos , Inmunoglobulina G/química , Mediciones Luminiscentes/métodos , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA