Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Syst Biol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832843

RESUMEN

A fundamental objective of evolutionary biology is to understand the origin of independently evolving species. Phylogenetic studies of species radiations rarely are able to document ongoing speciation; instead, modes of speciation, entailing geographic separation and/or ecological differentiation, are posited retrospectively. The Oreinotinus clade of Viburnum has radiated recently from north to south through the cloud forests of Mexico and Central America to the Central Andes. Our analyses support a hypothesis of incipient speciation in Oreinotinus at the southern edge of its geographic range, from central Peru to northern Argentina. Although several species and infraspecific taxa of have been recognized in this area, multiple lines of evidence and analytical approaches (including analyses of phylogenetic relationships, genetic structure, leaf morphology, and climatic envelopes) favor the recognition of just a single species, V. seemenii. We show that what has previously been recognized as V. seemenii f. minor has recently occupied the drier Tucuman-Bolivian forest region from Samaipata in Bolivia to Salta in northern Argentina. Plants in these populations form a well-supported clade with a distinctive genetic signature and they have evolved smaller, narrower leaves. We interpret this as the beginning of a within-species divergence process that has elsewhere in the neotropics resulted repeatedly in Viburnum species with a particular set of leaf ecomorphs. Specifically, the southern populations are in the process of evolving the small, glabrous, and entire leaf ecomorph that has evolved in four other montane areas of endemism. As predicted based on our studies of leaf ecomorphs in Chiapas, Mexico, these southern populations experience generally drier conditions, with large diurnal temperature fluctuations. In a central portion of the range of V. seemenii, characterized by wetter climatic conditions, we also document what may be the initial differentiation of the leaf ecomorph with larger, pubescent, and toothy leaves. The emergence of these ecomorphs thus appears to be driven by adaptation to subtly different climatic conditions in separate geographic regions, as opposed to parapatric differentiation along elevational gradients as suggested by Viburnum species distributions in other parts of the neotropics.

2.
Heredity (Edinb) ; 132(6): 296-308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38637723

RESUMEN

Here we use population genomic data (ddRAD-Seq) and ecological niche modeling to test biogeographic hypotheses for the divergence of the island-endemic cactus species Cereus insularis Hemsl. (Cereeae; Cactaceae) from its sister species C. fernambucensis Lem. The Cereus insularis grows in the Fernando de Noronha Islands (FNI), a Neotropical archipelago located 350 km off the Brazilian Atlantic Forest (BAF) coast. Phylogeographic reconstructions support a northward expansion by the common ancestor of C. insularis and C. fernambucensis along the mainland BAF coast, with C. insularis diverging from the widespread mainland taxon C. fernambucensis after colonizing FNI in the late Pleistocene. The morphologically distinct C. insularis is monophyletic and nested within C. fernambucensis, as expected from a progenitor-derivative speciation model. We tested alternative biogeographic and demographic hypotheses for the colonization of the FNI using Approximate Bayesian Computation. We found the greatest support for a stepping-stone path that emerged during periods of decreased sea level (the "bridge" hypothesis), in congruence with historical ecological niche modeling that shows highly suitable habitats on stepping-stone islands during glacial periods. The outlier analyses reveal signatures of selection in C. insularis, suggesting a putative role of adaptation driving rapid anagenic differentiation of this species in FNI.


Asunto(s)
Teorema de Bayes , Cactaceae , Islas , Filogenia , Filogeografía , Cactaceae/genética , Brasil , Ecosistema , Genética de Población
3.
New Phytol ; 237(2): 656-671, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36210520

RESUMEN

Biodiversity hotspots, such as the Caucasus mountains, provide unprecedented opportunities for understanding the evolutionary processes that shape species diversity and richness. Therefore, we investigated the evolution of Primula sect. Primula, a clade with a high degree of endemism in the Caucasus. We performed phylogenetic and network analyses of whole-genome resequencing data from the entire nuclear genome, the entire chloroplast genome, and the entire heterostyly supergene. The different characteristics of the genomic partitions and the resulting phylogenetic incongruences enabled us to disentangle evolutionary histories resulting from tokogenetic vs cladogenetic processes. We provide the first phylogeny inferred from the heterostyly supergene that includes all species of Primula sect. Primula. Our results identified recurrent admixture at deep nodes between lineages in the Caucasus as the cause of non-monophyly in Primula. Biogeographic analyses support the 'out-of-the-Caucasus' hypothesis, emphasizing the importance of this hotspot as a cradle for biodiversity. Our findings provide novel insights into causal processes of phylogenetic discordance, demonstrating that genome-wide analyses from partitions with contrasting genetic characteristics and broad geographic sampling are crucial for disentangling the diversification of species-rich clades in biodiversity hotspots.


Asunto(s)
Primula , Filogenia , Primula/genética , Estudio de Asociación del Genoma Completo , Biodiversidad , Especiación Genética
4.
Syst Biol ; 70(1): 67-85, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267945

RESUMEN

Phylogeny, molecular sequences, fossils, biogeography, and biome occupancy are all lines of evidence that reflect the singular evolutionary history of a clade, but they are most often studied separately, by first inferring a fossil-dated molecular phylogeny, then mapping on ancestral ranges and biomes inferred from extant species. Here we jointly model the evolution of biogeographic ranges, biome affinities, and molecular sequences, while incorporating fossils to estimate a dated phylogeny for all of the 163 extant species of the woody plant clade Viburnum (Adoxaceae) that we currently recognize in our ongoing worldwide monographic treatment of the group. Our analyses indicate that while the major Viburnum lineages evolved in the Eocene, the majority of extant species originated since the Miocene. Viburnum radiated first in Asia, in warm, broad-leaved evergreen (lucidophyllous) forests. Within Asia, we infer several early shifts into more tropical forests, and multiple shifts into forests that experience prolonged freezing. From Asia, we infer two early movements into the New World. These two lineages probably first occupied warm temperate forests and adapted later to spreading cold climates. One of these lineages (Porphyrotinus) occupied cloud forests and moved south through the mountains of the Neotropics. Several other movements into North America took place more recently, facilitated by prior adaptations to freezing in the Old World. We also infer four disjunctions between Asia and Europe: the Tinus lineage is the oldest and probably occupied warm forests when it spread, whereas the other three were more recent and in cold-adapted lineages. These results variously contradict published accounts, especially the view that Viburnum radiated initially in cold forests and, accordingly, maintained vessel elements with scalariform perforations. We explored how the location and biome assignments of fossils affected our inference of ancestral areas and biome states. Our results are sensitive to, but not entirely dependent upon, the inclusion of fossil biome data. It will be critical to take advantage of all available lines of evidence to decipher events in the distant past. The joint estimation approach developed here provides cautious hope even when fossil evidence is limited. [Biogeography; biome; combined evidence; fossil pollen; phylogeny; Viburnum.].


Asunto(s)
Viburnum , Ecosistema , Bosques , Fósiles , Filogenia , Filogeografía
5.
Syst Biol ; 70(4): 756-773, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33057686

RESUMEN

Rapid evolutionary radiations are among the most challenging phylogenetic problems, wherein different types of data (e.g., morphology and molecular) or genetic markers (e.g., nuclear and organelle) often yield inconsistent results. The tribe Arundinarieae, that is, the temperate bamboos, is a clade of tetraploid originated 22 Ma and subsequently radiated in East Asia. Previous studies of Arundinarieae have found conflicting relationships and/or low support. Here, we obtain nuclear markers from ddRAD data for 213 Arundinarieae taxa and parallel sampling of chloroplast genomes from genome skimming for 147 taxa. We first assess the feasibility of using ddRAD-seq data for phylogenetic estimates of paleopolyploid and rapidly radiated lineages, optimize clustering thresholds, and analysis workflow for orthology identification. Reference-based ddRAD data assembly approaches perform well and yield strongly supported relationships that are generally concordant with morphology-based taxonomy. We recover five major lineages, two of which are notable (the pachymorph and leptomorph lineages), in that they correspond with distinct rhizome morphologies. By contrast, the phylogeny from chloroplast genomes differed significantly. Based on multiple lines of evidence, the ddRAD tree is favored as the best species tree estimation for temperate bamboos. Using a time-calibrated ddRAD tree, we find that Arundinarieae diversified rapidly around the mid-Miocene corresponding with intensification of the East Asian monsoon and the evolution of key innovations including the leptomorph rhizomes. Our results provide a highly resolved phylogeny of Arundinarieae, shed new light on the radiation and reticulate evolutionary history of this tribe, and provide an empirical example for the study of recalcitrant plant radiations. [Arundinarieae; ddRAD; paleopolyploid; genome skimming; rapid diversification; incongruence.].


Asunto(s)
Genoma del Cloroplasto , Asia Oriental , Marcadores Genéticos , Filogenia , Poaceae/genética
6.
Bioinformatics ; 36(14): 4193-4196, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32399564

RESUMEN

SUMMARY: ipcoal is a free and open source Python package for simulating and analyzing genealogies and sequences. It automates the task of describing complex demographic models (e.g. with divergence times, effective population sizes, migration events) to the msprime coalescent simulator by parsing a user-supplied species tree or network. Genealogies, sequences and metadata are returned in tabular format allowing for easy downstream analyses. ipcoal includes phylogenetic inference tools to automate gene tree inference from simulated sequence data, and visualization tools for analyzing results and verifying model accuracy. The ipcoal package is a powerful tool for posterior predictive data analysis, for methods validation and for teaching coalescent methods in an interactive and visual environment. AVAILABILITY AND IMPLEMENTATION: Source code is available from the GitHub repository (https://github.com/pmckenz1/ipcoal/) and is distributed for packaged installation with conda. Complete documentation and interactive notebooks prepared for teaching purposes, including an empirical example, are available at https://ipcoal.readthedocs.io/. CONTACT: p.mckenzie@columbia.edu.


Asunto(s)
Metadatos , Programas Informáticos , Documentación , Filogenia
7.
Bioinformatics ; 36(8): 2592-2594, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31904816

RESUMEN

SUMMARY: ipyrad is a free and open source tool for assembling and analyzing restriction site-associated DNA sequence datasets using de novo and/or reference-based approaches. It is designed to be massively scalable to hundreds of taxa and thousands of samples, and can be efficiently parallelized on high performance computing clusters. It is available both as a command line interface and as a Python package with an application programming interface, the latter of which can be used interactively to write complex, reproducible scripts and implement a suite of downstream analysis tools. AVAILABILITY AND IMPLEMENTATION: ipyrad is a free and open source program written in Python. Source code is available from the GitHub repository (https://github.com/dereneaton/ipyrad/), and Linux and MacOS installs are distributed through the conda package manager. Complete documentation, including numerous tutorials, and Jupyter notebooks demonstrating example assemblies and applications of downstream analysis tools are available online: https://ipyrad.readthedocs.io/.


Asunto(s)
Documentación , Programas Informáticos
8.
Am J Bot ; 108(4): 664-679, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33818757

RESUMEN

PREMISE: The Ocotea complex contains the greatest diversity of Lauraceae in the Neotropics. However, the traditional taxonomy of the group has relied on only three main floral characters, and previous molecular analyses have used only a few markers and provided limited support for relationships among the major clades. This lack of useful data has hindered the development of a comprehensive classification, as well as studies of character evolution. METHODS: We used RAD-seq data to infer the phylogenetic relationships of 149 species in the Ocotea complex, generating a reference-based assembly using the Persea americana genome. The results provide the basis for a phylogenetic classification that reflects our current molecular knowledge and for analyses of the evolution of breeding system, stamen number, and number of anther locules. RESULTS: We recovered a well-supported tree that demonstrates the paraphyly of Licaria, Aniba, and Ocotea and clarifies the relationships of Umbellularia, Phyllostemonodaphne, and the Old World species. To begin the development of a new classification and to facilitate precise communication, we also provide phylogenetic definitions for seven major clades. Our ancestral reconstructions show multiple origins for the three floral characters that have routinely been used in Lauraceae systematics, suggesting that these be used with caution in the future. CONCLUSIONS: This study advances our understanding of phylogenetic relationships and character evolution in a taxonomically difficult group using RAD-seq data. Our new phylogenetic names will facilitate unambiguous communication as studies of the Ocotea complex progress.


Asunto(s)
Ocotea , Evolución Molecular , Filogenia , Fitomejoramiento , Análisis de Secuencia de ADN
9.
Mol Phylogenet Evol ; 151: 106896, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32562821

RESUMEN

The reconstruction of relationships within recently radiated groups is challenging even when massive amounts of sequencing data are available. The use of restriction site-associated DNA sequencing (RAD-Seq) to this end is promising. Here, we assessed the performance of RAD-Seq to infer the species-level phylogeny of the rapidly radiating genus Cereus (Cactaceae). To examine how the amount of genomic data affects resolution in this group, we used datasets and implemented different analyses. We sampled 52 individuals of Cereus, representing 18 of the 25 species currently recognized, plus members of the closely allied genera Cipocereus and Praecereus, and other 11 Cactaceae genera as outgroups. Three scenarios of permissiveness to missing data were carried out in iPyRAD, assembling datasets with 30% (333 loci), 45% (1440 loci), and 70% (6141 loci) of missing data. For each dataset, Maximum Likelihood (ML) trees were generated using two supermatrices, i.e., only SNPs and SNPs plus invariant sites. Accuracy and resolution were improved when the dataset with the highest number of loci was used (6141 loci), despite the high percentage of missing data included (70%). Coalescent trees estimated using SVDQuartets and ASTRAL are similar to those obtained by the ML reconstructions. Overall, we reconstruct a well-supported phylogeny of Cereus, which is resolved as monophyletic and composed of four main clades with high support in their internal relationships. Our findings also provide insights into the impact of missing data for phylogeny reconstruction using RAD loci.


Asunto(s)
Evolución Biológica , Cactaceae/genética , Genoma de Planta , Análisis de Secuencia de ADN , Secuencia de Bases , Bases de Datos Genéticas , Sitios Genéticos , Especiación Genética , Funciones de Verosimilitud , Filogenia , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal
10.
Syst Biol ; 68(2): 187-203, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30521050

RESUMEN

Species are the starting point for most studies of ecology and evolution, but the proper circumscription of species can be extremely difficult in morphologically variable lineages, and there are still few convincing examples of molecularly informed species delimitation in plants. Here, we focus on the Viburnum nudum complex, a highly variable clade that is widely distributed in eastern North America. Taxonomic treatments have mostly divided this complex into northern (V. nudum var. cassinoides) and southern (V. nudum var. nudum) entities, but additional names have been proposed. We used multiple lines of evidence, including RADseq, morphological, and geographic data, to test how many independently evolving lineages exist within the V. nudum complex. Genetic clustering and phylogenetic methods revealed three distinct groups-one lineage that is highly divergent, and two others that are recently diverged and morphologically similar. A combination of evidence that includes reciprocal monophyly, lack of introgression, and discrete rather than continuous patterns of variation supports the recognition of all three lineages as separate species. These results identify a surprising case of cryptic diversity in which two broadly sympatric species have consistently been lumped in taxonomic treatments. The clarity of our findings is directly related to the dense sampling and high-quality genetic data in this study. We argue that there is a critical need for carefully sampled and integrative species delimitation studies to clarify species boundaries even in well-known plant lineages. Studies following the model that we have developed here are likely to identify many more cryptic lineages and will fundamentally improve our understanding of plant speciation and patterns of species richness.


Asunto(s)
ADN de Plantas/genética , Viburnum/clasificación , Viburnum/genética , ADN de Plantas/química , Especiación Genética , Filogenia , Mapeo Restrictivo , Análisis de Secuencia de ADN , Especificidad de la Especie , Estados Unidos , Viburnum/anatomía & histología
11.
Ann Bot ; 123(2): 381-390, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29982369

RESUMEN

Background and Aims: Enlarged sterile flowers on the periphery of inflorescences increase the attractiveness of floral displays, and previous studies have generally demonstrated that these have positive effects on insect visitation and/or reproductive success. However, experiments have not specifically been designed to examine the benefits of sterile flowers under conditions that reflect the early stages in their evolution, i.e. when plants that produce sterile flowers are at low frequency. Methods: Over three years, three experiments were performed in natural populations of Viburnum lantanoides, which produces sterile marginal flowers (SMFs). The first experiment established that fruit production in V. lantanoides increases with the receipt of outcross pollen. The second tested the role of SMFs under extant conditions, comparing fruit production in two populations composed entirely of intact plants or entirely of plants with the SMFs removed. The third was designed to mimic the presumed context in which SMFs first evolved; here, SMFs were removed from all but a few plants in a population, and rates of insect visitation and fruit set were compared between plants with intact and denuded SMFs. Key Results: In comparing whole populations, the presence of SMFs nearly doubled fruit set. Under simulated 'ancestral' conditions within a population, plants with intact SMFs received double the insect visits and produced significantly more fruits than denuded plants. There was no significant effect of the number of inflorescences or fertile flowers on insect visitation or fruit set, indicating that the presence of SMFs accounted for these differences. Conclusions: The presence of SMFs significantly increased pollinator attraction and female reproductive success both in contemporary and simulated ancestral contexts, indicating that stabilizing selection is responsible for their maintenance, and directional selection likely drove their evolution when they first appeared. This study demonstrates a novel approach to incorporating historically relevant scenarios into experimental studies of floral evolution.


Asunto(s)
Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Polinización , Selección Genética , Viburnum/genética , Animales , Evolución Biológica , Autofecundación , Viburnum/crecimiento & desarrollo
12.
Syst Biol ; 66(3): 399-412, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798402

RESUMEN

Restriction-site associated DNA (RAD) sequencing and related methods rely on the conservation of enzyme recognition sites to isolate homologous DNA fragments for sequencing, with the consequence that mutations disrupting these sites lead to missing information. There is thus a clear expectation for how missing data should be distributed, with fewer loci recovered between more distantly related samples. This observation has led to a related expectation: that RAD-seq data are insufficiently informative for resolving deeper scale phylogenetic relationships. Here we investigate the relationship between missing information among samples at the tips of a tree and information at edges within it. We re-analyze and review the distribution of missing data across ten RAD-seq data sets and carry out simulations to determine expected patterns of missing information. We also present new empirical results for the angiosperm clade Viburnum (Adoxaceae, with a crown age >50 Ma) for which we examine phylogenetic information at different depths in the tree and with varied sequencing effort. The total number of loci, the proportion that are shared, and phylogenetic informativeness varied dramatically across the examined RAD-seq data sets. Insufficient or uneven sequencing coverage accounted for similar proportions of missing data as dropout from mutation-disruption. Simulations reveal that mutation-disruption, which results in phylogenetically distributed missing data, can be distinguished from the more stochastic patterns of missing data caused by low sequencing coverage. In Viburnum, doubling sequencing coverage nearly doubled the number of parsimony informative sites, and increased by >10X the number of loci with data shared across >40 taxa. Our analysis leads to a set of practical recommendations for maximizing phylogenetic information in RAD-seq studies. [hierarchical redundancy; phylogenetic informativeness; quartet informativeness; Restriction-site associated DNA (RAD) sequencing; sequencing coverage; Viburnum.].


Asunto(s)
Magnoliopsida/clasificación , Magnoliopsida/genética , Modelos Biológicos , Filogenia , Secuencia de Bases , Simulación por Computador , Análisis de Secuencia de ADN
13.
J Hered ; 109(6): 611-619, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29986032

RESUMEN

Genome-wide assessments allow for fuller characterization of genetic diversity, finer-scale population delineation, and better detection of demographically significant units to guide conservation compared with those based on "traditional" markers. Galapagos giant tortoises (Chelonoidis spp.) have long provided a case study for how evolutionary genetics may be applied to advance species conservation. Ongoing efforts to bolster tortoise populations, which have declined by 90%, have been informed by analyses of mitochondrial DNA sequence and microsatellite genotypic data, but could benefit from genome-wide markers. Taking this next step, we used double-digest restriction-site associated DNA sequencing to collect genotypic data at >26000 single nucleotide polymorphisms (SNPs) for 117 individuals representing all recognized extant Galapagos giant tortoise species. We then quantified genetic diversity, population structure, and compared results to estimates from mitochondrial DNA and microsatellite loci. Our analyses detected 12 genetic lineages concordant with the 11 named species as well as previously described structure within one species, C. becki. Furthermore, the SNPs provided increased resolution, detecting admixture in 4 individuals. SNP-based estimates of diversity and differentiation were significantly correlated with those derived from nuclear microsatellite loci and mitochondrial DNA sequences. The SNP toolkit presented here will serve as a resource for advancing efforts to understand tortoise evolution, species radiations, and aid conservation of the Galapagos tortoise species complex.


Asunto(s)
Especiación Genética , Variación Genética , Tortugas/genética , Animales , ADN Mitocondrial , Genoma , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Tortugas/clasificación
14.
Bioinformatics ; 30(13): 1844-9, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24603985

RESUMEN

MOTIVATION: Restriction-site-associated genomic markers are a powerful tool for investigating evolutionary questions at the population level, but are limited in their utility at deeper phylogenetic scales where fewer orthologous loci are typically recovered across disparate taxa. While this limitation stems in part from mutations to restriction recognition sites that disrupt data generation, an additional source of data loss comes from the failure to identify homology during bioinformatic analyses. Clustering methods that allow for lower similarity thresholds and the inclusion of indel variation will perform better at assembling RADseq loci at the phylogenetic scale. RESULTS: PyRAD is a pipeline to assemble de novo RADseq loci with the aim of optimizing coverage across phylogenetic datasets. It uses a wrapper around an alignment-clustering algorithm, which allows for indel variation within and between samples, as well as for incomplete overlap among reads (e.g. paired-end). Here I compare PyRAD with the program Stacks in their performance analyzing a simulated RADseq dataset that includes indel variation. Indels disrupt clustering of homologous loci in Stacks but not in PyRAD, such that the latter recovers more shared loci across disparate taxa. I show through reanalysis of an empirical RADseq dataset that indels are a common feature of such data, even at shallow phylogenetic scales. PyRAD uses parallel processing as well as an optional hierarchical clustering method, which allows it to rapidly assemble phylogenetic datasets with hundreds of sampled individuals. AVAILABILITY: Software is written in Python and freely available at http://www.dereneaton.com/software/.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , Análisis de Secuencia de ADN/métodos , Algoritmos , Análisis por Conglomerados , Sitios Genéticos , Programas Informáticos
15.
Mol Ecol ; 24(14): 3668-87, 2015 07.
Artículo en Inglés | MEDLINE | ID: mdl-26095958

RESUMEN

The nature and timing of evolution of niche differentiation among closely related species remains an important question in ecology and evolution. The American live oak clade, Virentes, which spans the unglaciated temperate and tropical regions of North America and Mesoamerica, provides an instructive system in which to examine speciation and niche evolution. We generated a fossil-calibrated phylogeny of Virentes using RADseq data to estimate divergence times and used nuclear microsatellites, chloroplast sequences and an intron region of nitrate reductase (NIA-i3) to examine genetic diversity within species, rates of gene flow among species and ancestral population size of disjunct sister species. Transitions in functional and morphological traits associated with ecological and climatic niche axes were examined across the phylogeny. We found the Virentes to be monophyletic with three subclades, including a southwest clade, a southeastern US clade and a Central American/Cuban clade. Despite high leaf morphological variation within species and transpecific chloroplast haplotypes, RADseq and nuclear SSR data showed genetic coherence of species. We estimated a crown date for Virentes of 11 Ma and implicated the formation of the Sea of Cortés in a speciation event ~5 Ma. Tree height at maturity, associated with fire tolerance, differs among the sympatric species, while freezing tolerance appears to have diverged repeatedly across the tropical-temperate divide. Sympatric species thus show evidence of ecological niche differentiation but share climatic niches, while allopatric and parapatric species conserve ecological niches, but diverge in climatic niches. The mode of speciation and/or degree of co-occurrence may thus influence which niche axis plants diverge along.


Asunto(s)
Especiación Genética , Variación Genética , Genética de Población , Filogenia , Quercus/clasificación , América Central , ADN de Cloroplastos/genética , ADN de Plantas/genética , Ecosistema , Flujo Génico , Intrones , Repeticiones de Microsatélite , Datos de Secuencia Molecular , América del Norte , Filogeografía , Densidad de Población , Quercus/genética , Análisis de Secuencia de ADN
16.
Mol Phylogenet Evol ; 79: 359-67, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25010772

RESUMEN

Determining phylogenetic relationships among very closely related species has remained a challenge for evolutionary biologists due to interlocus phylogenetic discordance and the difficulty of obtaining variable markers. Here, we used a Genotyping-by-Sequencing (GBS) approach to sample a reduced representation genomic data set and infer the phylogeny of seven closely related species in the genus Carex (Cyperaceae). Past attempts to reconstruct phylogenetic relationships among these species produced conflicting and poorly-supported results. We inferred a robust phylogeny based on >3000 GBS loci and >1300 SNPs (with a minimum sequence depth within individuals of 10) using maximum likelihood and Bayesian inference. We also tested for historical introgression using the D-statistic test. We compared these analyses with partitioned RAD analysis, which is designed to identify suboptimal trees reflecting secondary phylogenetic signal that may be obscured by the dominant signal in the data. Phylogenetic analyses yielded fully resolved trees with high support. We found two main clades, one grouping Carex scoparia populations and C. waponahkikensis, and a second clade grouping C. longii, C. vexans, C. suberecta and C. albolutescens. We detected marginally significant signals of introgression between C. scoparia and C. suberecta or C. albolutescens, and we rejected a hybrid origin hypothesis for C. waponahkikensis. Our results demonstrate the power of NGS data sets for resolving some of the most difficult phylogenetic challenges where traditional phylogenetic markers have failed.


Asunto(s)
Evolución Biológica , Carex (Planta)/clasificación , Hibridación Genética , Filogenia , Teorema de Bayes , Carex (Planta)/genética , ADN de Plantas/genética , Flujo Génico , Genotipo , Funciones de Verosimilitud , América del Norte , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
17.
Syst Biol ; 62(5): 689-706, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23652346

RESUMEN

Phylogenetic relationships among recently diverged species are often difficult to resolve due to insufficient phylogenetic signal in available markers and/or conflict among gene trees. Here we explore the use of reduced-representation genome sequencing, specifically in the form of restriction-site associated DNA (RAD), for phylogenetic inference and the detection of ancestral hybridization in non-model organisms. As a case study, we investigate Pedicularis section Cyathophora, a systematically recalcitrant clade of flowering plants in the broomrape family (Orobanchaceae). Two methods of phylogenetic inference, maximum likelihood and Bayesian concordance, were applied to data sets that included as many as 40,000 RAD loci. Both methods yielded similar topologies that included two major clades: a "rex-thamnophila" clade, composed of two species and several subspecies with relatively low floral diversity, and geographically widespread distributions at lower elevations, and a "superba" clade, composed of three species characterized by relatively high floral diversity and isolated geographic distributions at higher elevations. Levels of molecular divergence between subspecies in the rex-thamnophila clade are similar to those between species in the superba clade. Using Patterson's D-statistic test, including a novel extension of the method that enables finer-grained resolution of introgression among multiple candidate taxa by removing the effect of their shared ancestry, we detect significant introgression among nearly all taxa in the rex-thamnophila clade, but not between clades or among taxa within the superba clade. These results suggest an important role for geographic isolation in the emergence of species barriers, by facilitating local adaptation and differentiation in the absence of homogenizing gene flow.


Asunto(s)
Clasificación/métodos , Orobanchaceae/clasificación , Orobanchaceae/genética , Filogenia , Análisis de Secuencia de ADN , Teorema de Bayes , ADN de Plantas/genética , Funciones de Verosimilitud
18.
Ecol Evol ; 13(1): e9673, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36699574

RESUMEN

Obligate pollination mutualisms, in which plant and pollinator lineages depend on each other for reproduction, often exhibit high levels of species specificity. However, cases in which two or more pollinator species share a single host species (host sharing), or two or more host species share a single pollinator species (pollinator sharing), are known to occur in current ecological time. Further, evidence for host switching in evolutionary time is increasingly being recognized in these systems. The degree to which departures from strict specificity differentially affect the potential for hybridization and introgression in the associated host or pollinator is unclear. We addressed this question using genome-wide sequence data from five sympatric Panamanian free-standing fig species (Ficus subgenus Pharmacosycea, section Pharmacosycea) and their six associated fig-pollinator wasp species (Tetrapus). Two of the five fig species, F. glabrata and F. maxima, were found to regularly share pollinators. In these species, ongoing hybridization was demonstrated by the detection of several first-generation (F1) hybrid individuals, and historical introgression was indicated by phylogenetic network analysis. By contrast, although two of the pollinator species regularly share hosts, all six species were genetically distinct and deeply divergent, with no evidence for either hybridization or introgression. This pattern is consistent with results from other obligate pollination mutualisms, suggesting that, in contrast to their host plants, pollinators appear to be reproductively isolated, even when different species of pollinators mate in shared hosts.

19.
Appl Plant Sci ; 10(2): e11472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495198

RESUMEN

Premise: The degree of gametophyte dependence on the sporophyte life stage is a major feature that differentiates the life cycles of land plants, yet the evolutionary consequences of this difference remain poorly understood. Most evolutionary models assume organisms are either haploid or diploid for their entire lifespan, which is not appropriate for simulating plant life cycles. Here, we introduce shadie (Simulating Haploid-Diploid Evolution), a new, simple Python program for implementing simulations with biphasic life cycles and analyzing their results, using SLiM 3 as a simulation back end. Methods: We implemented evolutionary simulations under three realistic plant life cycle models supported in shadie, using either standardized or biologically realistic parameter settings to test how variation in plant life cycles and sexual systems affects patterns of genome diversity. Results: The dynamics of single beneficial mutation fixation did not vary dramatically between different models, but the patterns of spatial variation did differ, demonstrating that different life histories and model parameters affect both genetic diversity and linkage disequilibrium. The rate of linkage disequilibrium decay away from selected sites varied depending on model parameters such as cloning and selfing rates, through their impact on effective population sizes. Discussion: Evolutionary simulations are an exciting, underutilized approach in evolutionary research and education. shadie can aid plant researchers in developing null hypotheses, examining theory, and designing empirical studies, in order to investigate the role of the gametophyte life stage, and the effects of variation in plant life cycles, on plant genome evolution.

20.
Mol Plant ; 15(8): 1384-1399, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35854658

RESUMEN

Orobanchaceae is the largest family of parasitic plants, containing autotrophic and parasitic plants with all degrees of parasitism. This makes it by far the best family for studying the origin and evolution of plant parasitism. Here we provide three high-quality genomes of orobanchaceous plants, the autotrophic Lindenbergia luchunensis and the holoparasitic plants Phelipanche aegyptiaca and Orobanche cumana. Phylogenomic analysis of these three genomes together with those previously published and the transcriptomes of other orobanchaceous species created a robust phylogenetic framework for Orobanchaceae. We found that an ancient whole-genome duplication (WGD; about 73.48 million years ago), which occurred earlier than the origin of Orobanchaceae, might have contributed to the emergence of parasitism. However, no WGD events occurred in any lineage of orobanchaceous parasites except for Striga after divergence from their autotrophic common ancestor, suggesting that, in contrast with previous speculations, WGD is not associated with the emergence of holoparasitism. We detected evident convergent gene loss in all parasites within Orobanchaceae and between Orobanchaceae and dodder Cuscuta australis. The gene families in the orobanchaceous parasites showed a clear pattern of recent gains and expansions. The expanded gene families are enriched in functions related to the development of the haustorium, suggesting that recent gene family expansions may have facilitated the adaptation of orobanchaceous parasites to different hosts. This study illustrates a stepwise pattern in the evolution of parasitism in the orobanchaceous parasites and will facilitate future studies on parasitism and the control of parasitic plants in agriculture.


Asunto(s)
Cuscuta , Orobanchaceae , Parásitos , Striga , Animales , Genómica , Orobanchaceae/genética , Parásitos/genética , Filogenia , Striga/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA