Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Air Waste Manag Assoc ; 64(8): 957-69, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25185397

RESUMEN

Under the National Ambient Air Quality Standards (NAAQS), put in place as a result of the Clean Air Amendments of 1990, three regions in the state of Utah are in violation of the NAAQS for PM10 and PM2.5 (Salt Lake County, Ogden City, and Utah County). These regions are susceptible to strong inversions that can persist for days to weeks. This meteorology, coupled with the metropolitan nature of these regions, contributes to its violation of the NAAQS for PM during the winter. During January-February 2009, 1-hr averaged concentrations of PM10-2.5, PM2.5, NO(x), NO2, NO, O3, CO, and NH3 were measured. Particulate-phase nitrate, nitrite, and sulfate and gas-phase HONO, HNO3, and SO2 were also measured on a 1-hr average basis. The results indicate that ammonium nitrate averages 40% of the total PM2.5 mass in the absence of inversions and up to 69% during strong inversions. Also, the formation of ammonium nitrate is nitric acid limited. Overall, the lower boundary layer in the Salt Lake Valley appears to be oxidant and volatile organic carbon (VOC) limited with respect to ozone formation. The most effective way to reduce ammonium nitrate secondary particle formation during the inversions period is to reduce NO(x) emissions. However, a decrease in NO(x) will increase ozone concentrations. A better definition of the complete ozone isopleths would better inform this decision. Implications: Monitoring of air pollution constituents in Salt Lake City, UT, during periods in which PM2.5 concentrations exceeded the NAAQS, reveals that secondary aerosol formation for this region is NO(x) limited. Therefore, NO(x) emissions should be targeted in order to reduce secondary particle formation and PM2.5. Data also indicate that the highest concentrations of sulfur dioxide are associated with winds from the north-northwest, the location of several small refineries.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/química , Monitoreo del Ambiente , Nitratos/química , Óxidos de Nitrógeno/química , Material Particulado/química , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Cromatografía por Intercambio Iónico , Nitratos/análisis , Óxidos de Nitrógeno/análisis , Tamaño de la Partícula , Material Particulado/análisis , Estaciones del Año , Utah
2.
J Air Waste Manag Assoc ; 63(9): 1004-11, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24151675

RESUMEN

The US. Environmental Protection Agency (EPA) has proposed a new secondary standard based on visibility in urban areas. The proposed standard will be based on light extinction, calculated from 24-hr averaged measurements. It would be desirable to base the standard on a shorter averaging time to better represent human perception of visibility This could be accomplished by either an estimation of extinction from semicontinuous particulate matter (PM) data or direct measurement of scattering and absorption. To this end we have compared 1-hr measurements of fine plus coarse particulate scattering using a nephelometer along with an estimate of absorption from aethalometer measurements. The study took place in Lindon, UT, during February and March 2012. The nephelometer measurements were corrected for coarse particle scattering and compared to the Filter Dynamic Measurement System (FDMS) tapered element oscillating microbalance monitor (TEOM) PM2.5 measurements. The two measurements agreed with a mass scattering coefficient of 3.3 +/- 0.3 m2/g at relative humidity below 80%. However at higher humidity, the nephelometer gave higher scattering results due to water absorbed by ammonium nitrate and ammonium sulfate in the particles. This particle-associated water is not measured by the FDMS TEOM. The FDMS TEOM data could be corrected for this difference using appropriate IMPROVE protocols if the particle composition is known. However a better approach may be to use a particle measurement system that allows for semicontinuous measurements but also measures particle bound water Data are presented from a 2003 study in Rubidoux, CA, showing how this could be accomplished using a Grimm model 1100 aerosol spectrometer or comparable instrument.


Asunto(s)
Material Particulado/análisis , Ciudades , Humedad , Luz , Nefelometría y Turbidimetría , Material Particulado/normas , Agua
3.
J Air Waste Manag Assoc ; 72(11): 1231-1240, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36318720

RESUMEN

The apportionment of the contribution of wood smoke emitted particles to the total concentration of particulate matter in a region has been greatly aided by the development of new analytical methods. These analytical methods quantitatively determine organic marker compounds unique to wood combustion such as levoglucosan and dehydroabietic acid. These markers have generally been determined in 24-hour averaged samples. We have developed an instrument based on the collection of particles on an inert filter, desorption of the organic material in an inert atmosphere with subsequent GC separation and MS detection of the desorbed compounds. The GC-MS Organic Aerosol Monitor (OAM) instrument has been used in three field studies. An unexpected finding from these studies was the quantification of the contribution of secondary organic aerosols from gases present in wood smoke in addition to primary wood smoke emitted particles. The identification of this secondary material was made possible by the collection of hourly averaged data that allowed for the time patterns of black carbon, organic material, and wood smoke marker compounds to be included and compared in a Positive Matrix Factorization (PMF) analysis. Most of the organic markers associated with wood smoke (levoglucosan, stearic acid and dehydroabietic acid) are associated with primary wood smoke emissions, but a fraction of the levoglucosan and stearic acid are also associated with secondary organic material formed from gaseous precursors in wood smoke. Additionally, this secondary material was shown to be present in each in of the three urban area where wood smoke burning occurs. There is a need for additional studies to better understand the contribution of secondary particulate formation from both urban and wildfires.Implications: This paper presents results from three field studies which show that in addition to the formation of primary particulate matter from the combustion of wood smoke and secondary particulate matter is also formed from the gaseous compounds emitted with the wood smoke. This material is identified in the studies of wood combustion reported here by the identification and quantification of specific organic marker compounds related to wood combustion and is shown to and represents a contributor nearly as large as the primary emitted material and better quantifying the impact of wood combustion on airborne fine particulate matter.


Asunto(s)
Contaminantes Atmosféricos , Humo , Humo/análisis , Madera/química , Contaminantes Atmosféricos/análisis , Gases/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Aerosoles/análisis , Compuestos Orgánicos/análisis
4.
J Air Waste Manag Assoc ; 61(8): 864-71, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21874958

RESUMEN

A human subject exposure chamber, designed to hold six to eight subjects, coupled to an approximately 30-m3 Teflon reaction bag was designed and built to provide exposures that mimic the production and photochemical oxidation of atmospheric pollutants resulting from the combustion of coal or wood from a stove. The combustion products are introduced into the Teflon bag under atmospheric conditions. Photochemical oxidation of this mixture is accomplished by exposure to tropospheric sun-like radiation from an array of ultraviolet and black lamps. The aerosol in the Teflon reaction bag is then transferred into the exposure room to maintain a constant, lower exposure level. Continuous and semicontinuous monitoring of the gas and particulate matter (PM) pollution in the exposure room and the reaction bag is accomplished using a suite of instruments. This suite of instruments allows for the measurement of the concentrations of total and nonvolatile PM, nitric oxide, nitrogen dioxide, carbon monoxide, carbon dioxide, and ozone. The concentration of the particles was monitored by an R&P tapered element oscillating microbalance monitor. The chemical composition of the PM and its morphological characterization is accomplished by collecting samples in filter packs and conducting ion chromatography, elemental X-ray fluorescence, and scanning electron microscopy analyses. The concentration and composition of emissions from combustion of wood and coal is described. The results of this study suggest that although the bulk compositions of particulate emissions from the combustion of coal or wood in a stove have many similarities, the wood smoke aerosol is photochemically reactive, whereas the coal smoke aerosol is not.


Asunto(s)
Cámaras de Exposición Atmosférica , Material Particulado/efectos adversos , Adulto , Carbón Mineral , Diseño de Equipo , Humanos , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Humo , Madera
5.
J Air Waste Manag Assoc ; 61(8): 858-63, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21874957

RESUMEN

Exposure to fine particulate air pollution has been implicated as a risk factor for cardiopulmonary disease and mortality. Proposed biological pathways imply that particle-induced pulmonary and systemic inflammation play a role in activating the vascular endothelium and altering vascular function. Potential effects of fine particulate pollution on vascular function are explored using controlled chamber exposure and uncontrolled ambient exposure. Research subjects included four panels with a total of 26 healthy nonsmoking young adults. On two study visits, at least 7 days apart, subjects spent 3 hr in a controlled-exposure chamber exposed to 150-200 microg/m3 of fine particles generated from coal or wood combustion and 3 hr in a clean room, with exposure and nonexposure periods alternated between visits. Baseline, postexposure, and post-clean room reactive hyperemia-peripheral arterial tonometry (RH-PAT) was conducted. A microvascular responsiveness index, defined as the log of the RH-PAT ratio, was calculated. There was no contemporaneous vascular response to the few hours of controlled exposure. Declines in vascular response were associated with elevated ambient exposures for the previous 2 days, especially for female subjects. Cumulative exposure to real-life fine particulate pollution may affect vascular function. More research is needed to determine the roles of age and gender, the effect of pollution sources, the importance of cumulative exposure over a few days versus a few hours, and the lag time between exposure and response.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Material Particulado/efectos adversos , Adulto , Envejecimiento/fisiología , Arterias/fisiología , Capilares/efectos de los fármacos , Enfermedades Ambientales , Femenino , Humanos , Hiperemia/sangre , Hiperemia/inducido químicamente , Masculino , Tamaño de la Partícula , Caracteres Sexuales , Utah , Adulto Joven
6.
J Air Waste Manag Assoc ; 60(1): 3-25, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20102032

RESUMEN

Fine particulate matter is believed to be more toxic than coarse particles and to exacerbate health problems such as respiratory and cardiopulmonary diseases. Specific organic compounds within atmospheric fine particulate material can be used to differentiate specific inputs from various emissions and thus is helpful in identifying the major urban air pollution sources that contribute to these health problems. Particular marker compounds that carry signature information about different emission sources (i.e., gasoline or diesel motor vehicles, wood smoke, meat cooking, vegetative detritus, and cigarette smoke) are reviewed. Aerosol organic types (e.g., from mass spectrometry data, which can also help in elucidation of carbonaceous material sources) are also discussed. Apportionment of the primary source contributions and atmospheric processes contributing to fine particulate matter and fine particulate organic material concentrations are outlined. This review provides an overview of the latest developments in chemical characterization approaches for identification and quantification of compounds in complex organic mixtures associated with fine atmospheric particles and their use in chemical mass balance (CMB) and positive matrix factorization (PMF) source apportionment models.


Asunto(s)
Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/análisis , Material Particulado/química , Emisiones de Vehículos/análisis
7.
J Air Waste Manag Assoc ; 60(3): 346-55, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20397564

RESUMEN

The U.S. Environmental Protection Agency is promoting the development and application of sampling methods for the semicontinuous determination of fine particulate matter (PM2.5, particles with an aerodynamic diameter <2.5 microm) mass and chemical composition. Data obtained with these methods will significantly improve the understanding of the primary sources, chemical conversion processes, and meteorological atmospheric processes that lead to observed PM2.5 concentrations and will aid in the understanding of the etiology of PM2.5-related health effects. During January and February 2007, several semicontinuous particulate matter (PM) monitoring systems were compared at the Utah State Lindon Air Quality Sampling site. Semicontinuous monitors included instruments to measure total PM2.5 mass (filter dynamic measurement system [FDMS] tapered element oscillating microbalance [TEOM], GRIMM), nonvolatile PM2.5 mass (TEOM), sulfate and nitrate (two PM2.5 and one PM10 [PM with an aerodynamic diameter <10 microm] ion-chromatographic-based samplers), and black carbon (aethalometer). PM10 semicontinuous mass measurements were made with GRIMM and TEOM instruments. These measurements were all made on a 1-hr average basis. Source apportionment analysis indicated that sources impacting the site were mainly urban sources and included mobile sources (gasoline and diesel) and residential burning of wood, with some elevated concentrations because of the effect of winter inversions. The FDMS TEOM and GRIMM instruments were in good agreement, but TEOM monitor measurements were low because of the presence of significant semi-volatile material. Semi-volatile mass was present dominantly in the PM2.5 mass.


Asunto(s)
Aerosoles/análisis , Monitoreo del Ambiente/instrumentación , Material Particulado/análisis , Aerosoles/química , Modelos Químicos , Material Particulado/química , Utah
8.
J Air Waste Manag Assoc ; 70(3): 260-282, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31951805

RESUMEN

During August and September 2012, a study was conducted to determine the sources of PM2.5 adjacent to the I-710 Long Beach Freeway. The site is directly affected by the emissions from heavy diesel traffic flowing from major container ports about 10 km south of the sampling site. Hourly average data were obtained for particulate species including PM2.5, black carbon and UV absorbing carbon, EC, fine particulate nonvolatile and semi-volatile organic material (NVOM and SVOM), sulfate, nitrate, chloride, ammonium ion, and Na ion, and for related factors including O3, CO, NOX, SO2, and total traffic flow on the I-710. A total of 520 hourly averaged data sets with 15 measured variables were analyzed by EPA-PMF v5.0. The data were best described by a 10-factor solution. Based on the composition and diurnal patterns of the factors, they were assigned to three diesel-related factors (two of which appeared to represent traffic from the ports and one general freeway diesel factor), a light-duty, spark-ignition vehicle-related factor, three secondary factors (one of which was associated with O3 formation processes), and three factors dominated by sulfate, SO2, and chloride, respectively. The diurnal patterns for these last three factors are strongly correlated. Meteorological and refinery upset data indicate that they are associated with emissions from a nearby refinery. The results of the PMF analysis were combined with nephelometer light scattering, corrected for coarse particle scattering and estimated aerosol water content in a multilinear regression analysis to identify visibility degradation sources. Major contributors were the aerosol water content, and the secondary PMF factors associated with either Nitrate and NVOM or NVOM and SVOM. The use of hourly average data made possible the identification of factors associated with gasoline vehicle emissions and both port and non-port diesel emissions.Implications: Hourly averaged data were obtained for PM2.5, its components and factors related to primary emissions and the formation of secondary material at a near freeway sampling location adjacent to the I-710 freeway just south of the Long Beach Boulevard entrance and 10 km north of the Ports of Long Beach and Los Angeles. The major objective of the study was to determine the impact of traffic from the ports at the monitoring site. This manuscript reports on the PMF analysis of the data set. Factors related to both diesel traffic originating from the ports and diesel traffic from non-port origins were identified. The diesel traffic originating from the ports was responsible for 9% of the total traffic and 95% of the BC measured at the sampling site. The non-port diesel traffic was responsible for 15% of the total traffic and 5% of the BC. While the Port 1 diesel traffic coming from the ports contributed a large fraction of the BC, this source contributed only 2% of the CO and 5% of the NOX at the sampling site. The impact of these traffic sources on light scattering was also small. Analysis of sources of sulfate and SO2 at the sampling site indicated that these species did not come from port activities of ships at or approaching the port, but rather from upset flare events at a nearby oil refinery.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Aerosoles/análisis , Compuestos de Amonio/análisis , California , Carbono/análisis , Cloruros/análisis , Monitoreo del Ambiente/métodos , Nitratos/análisis , Óxidos/análisis , Ozono/análisis , Sodio/análisis , Sulfatos/análisis
9.
J Air Waste Manag Assoc ; 59(1): 101-7, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19216193

RESUMEN

The GRIMM model 1.107 monitor is designed to measure particle size distribution and particulate mass based on a light scattering measurement of individual particles in the sampled air. The design and operation of the instrument are described. Protocols used to convert the measured size number distribution to a mass concentration consistent with U.S. Environmental Protection Agency protocols for measuring particulate matter (PM) less than 10 microm (PM10) and less than 2.5 microm (PM2.5) in aerodynamic diameter are described. The performance of the resulting continuous monitor has been evaluated by comparing GRIMM monitor PM2.5 measurements with results obtained by the Rupprecht and Patashnick Co. (R&P) filter dynamic measurement system (FDMS). Data were obtained during month-long studies in Rubidoux, CA, in July 2003 and in Fresno, CA, in December 2003. The results indicate that the GRIMM monitor does respond to total PM2.5 mass, including the semi-volatile components, giving results comparable to the FDMS. The data also indicate that the monitor can be used to estimate water content of the fine particles. However, if the inlet to the monitor is heated, then the instrument measures only the nonvolatile material, more comparable to results obtained with a conventional heated filter tapered element oscillating microbalance (TEOM) monitor. A recent modification of the model 180, with a Nafion dryer at the inlet, measures total PM2.5 including the nonvolatile and semi-volatile components, but excluding fine particulate water. Model 180 was in agreement with FDMS data obtained in Lindon, UT, during January through February 2007.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Aerosoles/química , Contaminantes Atmosféricos/química , California , Monitoreo del Ambiente/instrumentación , Luz , Tamaño de la Partícula , Material Particulado/química , Dispersión de Radiación , Utah , Volatilización
10.
J Air Waste Manag Assoc ; 59(9): 1092-110, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19785276

RESUMEN

Intensive monitoring studies of aerosol have been conducted in two regions of California with poor air quality. Winter monitoring in the Fresno area was conducted in December 2003. Two summer samplings were collected from the eastern Los Angeles Basin, from Rubidoux in 2003 and Riverside in 2005. All three of these studies featured a suite of semicontinuous aerosol monitors. The speciated aerosol data with continuous gaseous measurements from these studies were combined with continuous Automated Surface Observing System (ASOS) measurements of visibility and extinction from nearby airports and modeled aerosol water content to conduct source apportionment analyses. The data were analyzed using three different techniques. A conventional positive matrix factorization (PMF) method was used. Then a novel approach was used that coupled PMF with added extinction and modeled water data. Another technique involved integrating conventional PMF with linear regression to obtain the extinction associated with each source. The novel PMF with added extinction and modeled water data provided the most robust results. The Fresno winter study was meteorologically characterized by stagnant conditions, a shallow mixing height, and intermittent periods of fog and low clouds. Six factors were identified using PMF. The secondary nitrate and gasoline mobile combustion emission associated sources exhibited the highest extinction coefficients. PMF also identified six factors in the summer 2003 study at Rubidoux. The secondary nitrate and the ozone-related secondary semi-volatile organic material (SVOM) sources exhibited the highest extinction levels. Water associated with the aerosols plays an important role because of the marine influence and stratus clouds typically occurring in the basin during the summer months. The summer of 2005 study in Riverside lead to the identification of 11 sources. The highest contributors to extinction are associated with material transported across the basin, the relative humidity secondary source, followed by secondary nitrate.


Asunto(s)
Aerosoles/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Luz , Material Particulado/análisis , California
11.
J Air Waste Manag Assoc ; 59(8): 1007-17, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19728495

RESUMEN

Semi-volatile organic carbonaceous material (SVOC) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because semi-volatile carbonaceous material is lost from the collection media during sample collection. Two modifications of a Sunset Laboratory carbon aerosol monitor allowing for the determination of semi-volatile fine particulate organic material are described. Collocated conventional and modified instruments were operated simultaneously using a common inlet. Comparisons were made with integrated PC-BOSS data for quartz filter retained nonvolatile organic carbon (NVOC) and elemental carbon (EC), SVOC, and total carbon (TC = SVOC + NVOC + EC) and good agreement was observed between TC concentrations during studies conducted in Rubidoux, CA. Precision of the comparison was sigma = +/-1.5 microg-C/m3 (+/-8%). On the basis of experiments performed with the modified Sunset monitor, a dual-oven Sunset monitor was developed and extensively tested in Lindon, UT; Riverside, CA; and in environmental exposure chambers. The precision for the measurement of TC with the dual-oven instrument was sigma = +/-1.4 microg-C/m3 (+/-13%).


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Monitoreo del Ambiente/instrumentación , Tamaño de la Partícula , Utah , Volatilización
13.
J Air Waste Manag Assoc ; 58(1): 65-71, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18236795

RESUMEN

The Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) has been previously verified as being capable of measuring total fine particulate matter (PM2.5), including semi-volatile species. The present study was conducted to determine if the simple modification of a commercial speciation sampler with a charcoal denuder followed by a filter pack containing a quartz filter and a charcoal-impregnated glass (CIG) fiber filter would allow for the measurement of total PM2.5, including semi-volatile organic material. Data were collected using an R&P (Rupprecht and Pastasnik Co., Inc.) Partisol Model 2300 speciation sampler; an R&P Partisol speciation sampler modified with a BOSS denuder, followed by a filter pack with a quartz and a CIG filter; a Met One spiral aerosol speciation sampler (SASS); and the PC-BOSS from November 2001 to March 2002 at a U.S. Environmental Protection Agency (EPA) Science to Achieve Results (STAR) sampling site in Lindon, UT. Total PM2.5 mass, ammonium nitrate (both nonvolatile and semi-volatile), ammonium sulfate, organic carbon (both non-volatile and semi-volatile), and elemental carbon were determined on a 24-hr basis. Results obtained with the individual samplers were compared to determine the capability of the modified R&P speciation sampler for measuring total PM2.5, including semi-volatile components. Data obtained with the modified speciation sampler agreed with the PC-BOSS results. Data obtained with the two unmodified speciation samplers were low by an average of 26% because of the loss of semi-volatile organic material from the quartz filter during sample collection.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/análisis , Material Particulado/análisis , Contaminantes Atmosféricos/química , Carbono/análisis , Carbón Orgánico , Filtración/instrumentación , Filtración/métodos , Compuestos Orgánicos/química , Material Particulado/química , Cuarzo , Estaciones del Año , Sulfatos/análisis , Utah , Volatilización
14.
J Air Waste Manag Assoc ; 58(1): 72-7, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18236796

RESUMEN

Semi-volatile organic material (SVOM) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because SVOM is lost from the collection media during sample collection. We have modified a Sunset Laboratory Carbon Aerosol Monitor to allow for the determination of SVOM. In a conventional Sunset monitor, gas-phase organic compounds are removed in the sampled airstream by a diffusion denuder employing charcoal-impregnated cellulose filter (CIF) surfaces. Subsequently, particles are collected on a quartz filter and the instrument then determines both the organic carbon and elemental carbon fractions of the aerosol using a thermal/optical method. However, some of the SVOM is lost from the filter during collection, and therefore is not determined. Because the interfering gas-phase organic compounds are removed before aerosol collection, the SVOM can be determined by filtering the particles at the instrument inlet and then replacing the quartz filter in the monitor with a charcoal-impregnated glass fiber filter (CIG), which retains the SVOM lost from particles collected on the inlet filter. The resulting collected SVOM is then determined in the analysis step by measurement of the carbonaceous material thermally evolved from the CIG filter. This concept was tested during field studies in February 2003 in Lindon, UT, and in July 2003 in Rubidoux, CA. The results obtained were validated by comparison with Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) results. The sum of nonvolatile organic material determined with a conventional Sunset monitor and SVOM determined with the modified Sunset monitor agree with the PC-BOSS results. Linear regression analysis of total carbon concentrations determined by the PC-BOSS and the Sunset resulted in a zero-intercept slope of 0.99 +/- 0.02 (R2 = 0.92) and a precision of sigma = +/- 1.5 microg C/m3 (8%).


Asunto(s)
Aerosoles/análisis , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/análisis , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Compuestos Orgánicos/química , Material Particulado/química , Volatilización
15.
J Air Waste Manag Assoc ; 58(3): 357-68, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18376639

RESUMEN

Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Interpretación Estadística de Datos , Elementos Químicos , Monitoreo del Ambiente , Pennsylvania , Espectrofotometría Atómica
16.
J Air Waste Manag Assoc ; 68(5): 390-402, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28837409

RESUMEN

A study was conducted on the Brigham Young University campus during January and February 2015 to identify winter-time sources of fine particulate material in Utah Valley, Utah. Fine particulate mass and components and related gas-phase species were all measured on an hourly averaged basis. Light scattering was also measured during the study. Included in the sampling was the first-time source apportionment application of a new monitoring instrument for the measurement of fine particulate organic marker compounds on an hourly averaged basis. Organic marker compounds measured included levoglucosan, dehydroabietic acid, stearic acid, pyrene, and anthracene. A total of 248 hourly averaged data sets were available for a positive matrix factorization (PMF) analysis of sources of both primary and secondary fine particulate material. A total of nine factors were identified. The presence of wood smoke emissions was associated with levoglucosan, dehydroabietic acid, and pyrene markers. Fine particulate secondary nitrate, secondary organic material, and wood smoke accounted for 90% of the fine particulate material. Fine particle light scattering was dominated by sources associated with wood smoke and secondary ammonium nitrate with associated modeled fine particulate water. IMPLICATIONS: The identification of sources and secondary formation pathways leading to observed levels of PM2.5 (particulate matter with an aerodynmaic diameter <2.5 µm) is important in making regulatory decisions on pollution control. The use of organic marker compounds in this assessment has proven useful; however, data obtained on a daily, or longer, sampling schedule limit the value of the information because diurnal changes associated with emissions and secondary aerosol formation cannot be identified. A new instrument, the gas chromtography-mass spectrometry (GC-MS) organic aerosol monitor, allows for the determination on these compounds on an hourly averaged basis. The demonstrated potential value of hourly averaged data in a source apportionment analysis indicates that significant improvement in the data used for making regulatory decisions is possible.


Asunto(s)
Aerosoles/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Aerosoles/química , Contaminantes Atmosféricos/análisis , Cromatografía de Gases y Espectrometría de Masas , Tamaño de la Partícula , Material Particulado/química , Estaciones del Año , Humo/análisis , Utah , Madera/química
17.
J Air Waste Manag Assoc ; 57(1): 53-8, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17269230

RESUMEN

A gas chromatographic method that uses solid-phase microextraction for analysis of organic marker compounds in fine particulate matter (PM2.5) is reported. The target marker compounds were selected for specificity toward emission from wood smoke, diesel or gasoline combustion, or meat cooking. Temperature-programmed volatilization analysis was used to characterize the thermal stabilities and volatile properties of the compounds of interest. The compounds were thermally evaporated from a quartz filter, sorbed to a solid phase microextraction (SPME) fiber, and thermally desorbed at 280 degrees C in a gas chromatograph injection port connected via a DB 1701 capillary separating column. Various experimental parameters (fiber type, time, and temperature of sorption) were optimized. It was found that high extraction yield could be achieved using a polyacrylate fiber for polar substances, such as levoglucosan, and a 7-microm polydimethylsiloxane (PDMS)-coated fiber for nonpolar compounds, such as hopanes and polyaromatic hydrocarbon. A compromise was made by selecting a carboxen/PDMS fiber, which can simultaneously extract all of the analytes of interest with moderate-to-high efficiency at 180 degrees C within a 30-min accumulation period. The optimized method was applied to the determination of levoglucosan in pine wood combustion emissions. The simplicity, rapidity, and selectivity of sample collection with a polymer-coated SPME coupled to capillary gas chromatography (GC) made this method potentially useful for atmospheric chemistry studies.


Asunto(s)
Contaminantes Ambientales/análisis , Contaminación Ambiental/análisis , Compuestos Orgánicos/análisis , Cromatografía de Gases , Indicadores y Reactivos , Volatilización , Madera
18.
J Air Waste Manag Assoc ; 57(10): 1251-67, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17972770

RESUMEN

Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NO(x), NO2, and O3 concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were secondary transported material (dominated by ammonium sulfate) from the west and southwest (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. These findings are consistent with the majority of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport, and thus decoupled from local activity involving organic pollutants in the metropolitan area. In contrast, the major local secondary sources were dominated by organic material.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Carbono/análisis , Nitratos/análisis , Tamaño de la Partícula , Material Particulado/química , Pennsylvania , Sulfatos/análisis
19.
J Air Waste Manag Assoc ; 56(12): 1694-706, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17195488

RESUMEN

The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.


Asunto(s)
Contaminantes Atmosféricos/análisis , Luz , Material Particulado/química , Contaminantes Atmosféricos/química , Sulfato de Amonio/análisis , Arizona , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Humanos , Humedad , Modelos Lineales , Conceptos Meteorológicos , Nitratos/análisis , Tamaño de la Partícula , Material Particulado/análisis , Estaciones del Año , Sulfatos/análisis , Factores de Tiempo
20.
J Air Waste Manag Assoc ; 56(4): 384-97, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16681204

RESUMEN

Ammonium nitrate and semivolatile organic material (SVOM) are significant components of fine particles in urban atmospheres. These components, however, are not properly determined with methods such as the fine particulate matter (PM2.5) Federal Reference Method (FRM) or other single filter samplers because of significant losses of semivolatile material (SVM) from particles collected on the filter during sampling. The R&P tapered element oscillating microbalance (TEOM) monitor also does not measure SVM, because this method heats the sample to remove particle bound water, which also results in evaporation of SVM. Recent advances in monitoring techniques have resulted in samplers for both integrated and continuous measurement of total PM2.5, including the particle concentrator-Brigham Young University organic sampling system (PC-BOSS), the real-time total ambient mass sampler (RAMS), and the R&P filter dynamics measurement system (FDMS) TEOM monitor. Results obtained using these samplers have been compared with those obtained with either a PM2.5 FRM sampler or a TEOM monitor in studies conducted during the past five years. These studies have shown the following: (1) the PC-BOSS, RAMS, and FDMS TEOM are all comparable. Each instrument measures both the nonvolatile material and the SVM. (2) The SVM is not retained on the heated filter of a regular TEOM monitor and is not measured by this sampling technique. (3) Much of the SVM is also lost during sampling from single filter samplers such as the PM2.5 FRM sampler. (4) The amount of SVM lost from single filter samplers can vary from less than one-third of that lost from heated TEOM filters during cold winter conditions to essentially all during warm summer conditions. (5) SVOM can only be reliably collected using an appropriate denuder sampler. (6) A PM2.5 speciation sampler can be easily modified to a denuder sampler with filters that can be analyzed for semivolatile organic carbon (OC), nonvolatile OC, and elemental carbon using existing OC/elemental carbon analytical techniques. The research upon which these statements are based for various urban studies are summarized in this paper.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ocupacionales del Aire/química , Filtración , Estándares de Referencia , Reproducibilidad de los Resultados , Estaciones del Año , Estados Unidos , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA