Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901721

RESUMEN

Pancreatic cancer is projected to be the second leading cause of cancer-related death by 2030 in the US. The benefits of the most common systemic therapy for various pancreatic cancers have been masked by high drug toxicities, adverse reactions, and resistance. The use of nanocarriers such as liposomes to overcome these unwanted effects has become very popular. This study aims to formulate 1,3-bistertrahydrofuran-2yl-5FU (MFU)-loaded liposomal nanoparticles (Zhubech) and to evaluate itsstability, release kinetics, in vitro and in vivo anticancer activities, and biodistribution in different tissues. Particle size and zeta potential were determined using a particle size analyzer, while cellular uptake of rhodamine-entrapped liposomal nanoparticles (Rho-LnPs) was determined by confocal microscopy. Gadolinium hexanoate (Gd-Hex) was synthesized and entrapped into the liposomal nanoparticle (LnP) (Gd-Hex-LnP), as a model contrast agent, to evaluate gadolinium biodistribution and accumulation by LnPs in vivo using inductively coupled plasma mass spectrometry (ICP-MS). The mean hydrodynamic diameters of blank LnPs and Zhubech were 90.0 ± 0.65 nm and 124.9 ± 3.2 nm, respectively. The hydrodynamic diameter of Zhubech was found to be highly stable at 4 °C and 25 °C for 30 days in solution. In vitro drug release of MFU from Zhubech formulation exhibited the Higuchi model (R2 value = 0.95). Both Miapaca-2 and Panc-1 treated with Zhubech showed reduced viability, two- or four-fold lower than that of MFU-treated cells in 3D spheroid (IC50Zhubech = 3.4 ± 1.0 µM vs. IC50MFU = 6.8 ± 1.1 µM) and organoid (IC50Zhubech = 9.8 ± 1.4 µM vs. IC50MFU = 42.3 ± 1.0 µM) culture models. Confocal imaging confirmed a high uptake of rhodamine-entrapped LnP by Panc-1 cells in a time-dependent manner. Tumor-efficacy studies in a PDX bearing mouse model revealed a more than 9-fold decrease in mean tumor volumes in Zhubech-treated (108 ± 13.5 mm3) compared to 5-FU-treated (1107 ± 116.2 mm3) animals, respectively. This study demonstrates that Zhubech may be a potential candidate for delivering drugs for pancreatic cancer treatment.


Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Animales , Ratones , Liposomas/química , Gadolinio/uso terapéutico , Distribución Tisular , Neoplasias Pancreáticas/tratamiento farmacológico , Fluorouracilo/uso terapéutico , Nanopartículas/química , Neoplasias Pancreáticas
2.
BMC Cancer ; 22(1): 1345, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550419

RESUMEN

The failure of current chemotherapeutic agents for pancreatic cancer (PCa) makes it the most aggressive soft tissue tumor with a 5-year survival of slightly above 10% and is estimated to be the second leading cause of cancer death by 2030. OBJECTIVE: The main aim was to synthesize, characterize and evaluate the anticancer activity of 1,3-bistetrahydrofuran-2yl-5FU (MFU). METHODS: MFU was synthesized by using 5-fluorouracil (5-FU) and tetrahydrofuran acetate, and characterized by nuclear magnetic resonance (NMR), micro-elemental analysis, high-performance liquid chromatography (HPLC), and liquid chromatography with mass spectrophotometry (LC-MS). MFU and Gemcitabine hydrochloride (GemHCl) were tested for antiproliferative activity against MiaPaca-2 and Panc-1 cell lines. RESULTS: The half-minimum inhibitory concentration (IC50) of MFU was twice lower than that of GemHCl when used in both cell lines. MiaPaca-2 cells (MFU-IC50 = 4.5 ± 1.2 µM vs. GemHCl-IC50 = 10.3 ± 1.1 µM); meanwhile similar trend was observed in Panc-1 cells (MFU-IC50 = 3.0 ± 1 µM vs. GemHCl-IC50 = 6.1 ± 1.03 µM). The MFU and GemHCl effects on 3D spheroids showed a similar trend (IC50-GemHCl = 14.3 ± 1.1 µM vs. IC50-MFU = 7.2 ± 1.1 µM) for MiaPaca-2 cells, and (IC50-GemHCl = 16.3 ± 1.1 µM vs. IC50-MFU = 9.2 ± 1.1 µM) for Panc-1 cells. MFU significantly inhibited clonogenic cell growth, and induced cell death via apoptosis. Cell cycle data showed mean PI for GemHCl (48.5-55.7) twice higher than MFU (24.7 to 27.9) for MiaPaca-2 cells, and similarly to Panc-1 cells. The in-vivo model showed intensely stained EGFR (stained brown) in all control, GemHCl and MFU-treated mice bearing subcutaneous PDX tumors, however, HER2 expression was less stained in MFU-treated tumors compared to GemHCl-treated tumors and controls. Mean tumor volume of MFU-treated mice (361 ± 33.5 mm3) was three-fold lower than GemHCl-treated mice (1074 ± 181.2 mm3) bearing pancreatic PDX tumors. CONCLUSION: MFU was synthesized with high purity and may have potential anticancer activity against PCa.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Animales , Ratones , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Neoplasias Pancreáticas/patología , Gemcitabina , Proliferación Celular , Apoptosis , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pancreáticas
3.
AAPS PharmSciTech ; 23(1): 11, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862567

RESUMEN

Drug delivery into the brain has for long been a huge challenge as the blood-brain barrier (BBB) offers great resistance to entry of foreign substances (with drugs inclusive) into the brain. This barrier in healthy individuals is protective to the brain, disallowing noxious substances present in the blood to get to the brain while allowing for the exchange of small molecules into the brain by diffusion. However, BBB is disrupted under certain disease conditions, such as cerebrovascular diseases including acute ischemic stroke and intracerebral hemorrhage, and neurodegenerative disorders including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and cancers. This review aims to provide a broad overview of present-day strategies for brain drug delivery, emphasizing novel delivery systems. Hopefully, this review would inspire scientists and researchers in the field of drug delivery across BBB to uncover new techniques and strategies to optimize drug delivery to the brain. Considering the anatomy, physiology, and pathophysiological functioning of the BBB in health and disease conditions, this review is focused on the controversies drawn from conclusions of recently published studies on issues such as the penetrability of nanoparticles into the brain, and whether active targeted drug delivery into the brain could be achieved with the use of nanoparticles. We also extended the review to cover novel non-nanoparticle strategies such as using viral and peptide vectors and other non-invasive techniques to enhance brain uptake of drugs.


Asunto(s)
Isquemia Encefálica , Nanopartículas , Preparaciones Farmacéuticas , Accidente Cerebrovascular , Barrera Hematoencefálica , Encéfalo , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA