Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752345

RESUMEN

BACKGROUND: Autophagy is a catabolic cellular recycling pathway that is essential for maintaining intracellular homeostasis. Autophagosome formation is achieved via the coordination of the Beclin-1 protein complex. Rubicon is a Beclin-1 associated protein that suppresses autophagy by impairing the activity of the class III PI3K, Vps34. However, very little is known about the molecular mechanisms that regulate Rubicon function. METHODS: In this study, co-immunoprecipitation and kinase assays were used to investigate the ability of Hormonally Upregulated Neu-associated Kinase (HUNK) to bind to and phosphorylate Rubicon. LC3B was monitored by immunofluorescence and immunoblotting to determine whether phosphorylation of Rubicon by HUNK controls the autophagy suppressive function of Rubicon. RESULTS: Findings from this study identify Rubicon as a novel substrate of HUNK and show that phosphorylation of Rubicon inhibits its function, promoting autophagy.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Fagosomas/metabolismo
2.
J Biol Chem ; 291(52): 26850-26859, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-27875304

RESUMEN

Previous studies have shown that extracellular signal-regulated kinase 1/2 (ERK1/2) directly inhibits mitochondrial function during cellular injury. We evaluated the role of ERK1/2 on the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) gene, a master regulator of mitochondrial function. The potent and specific MEK1/2 inhibitor trametinib rapidly blocked ERK1/2 phosphorylation, decreased cytosolic and nuclear FOXO3a/1 phosphorylation, and increased PGC-1α gene expression and its downstream mitochondrial biogenesis (MB) targets under physiological conditions in the kidney cortex and in primary renal cell cultures. The epidermal growth factor receptor (EGFR) inhibitor erlotinib blocked ERK1/2 phosphorylation and increased PGC-1α gene expression similar to treatment with trametinib, linking EGFR activation and FOXO3a/1 inactivation to the down-regulation of PGC-1α and MB through ERK1/2. Pretreatment with trametinib blocked early ERK1/2 phosphorylation following ischemia/reperfusion kidney injury and attenuated the down-regulation of PGC-1α and downstream target genes. These results demonstrate that ERK1/2 rapidly regulates mitochondrial function through a novel pathway, EGFR/ERK1/2/FOXO3a/1/PGC-1α, under physiological and pathological conditions. As such, ERK1/2 down-regulates mitochondrial function directly by phosphorylation of upstream regulators of PGC-1α and subsequently decreasing MB.


Asunto(s)
Lesión Renal Aguda/patología , Regulación de la Expresión Génica , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Daño por Reperfusión/complicaciones , Daño por Reperfusión/fisiopatología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Animales , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Riñón/citología , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , PPAR gamma/genética , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosforilación , Conejos , Transducción de Señal
3.
Nucleic Acids Res ; 41(9): 4949-62, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23519612

RESUMEN

Alternative mRNA splicing is a mechanism to regulate protein isoform expression and is regulated by alternative splicing factors. The alternative splicing factor 45 (SPF45) is overexpressed in cancer, although few biological effects of SPF45 are known, and few splicing targets have been identified. We previously showed that Extracellular Regulated Kinase 2 (ERK2) phosphorylation of SPF45 regulates cell proliferation and adhesion to fibronectin. In this work, we show that Cdc2-like kinase 1 (Clk1) phosphorylates SPF45 on eight serine residues. Clk1 expression enhanced, whereas Clk1 inhibition reduced, SPF45-induced exon 6 exclusion from Fas mRNA. Mutational analysis of the Clk1 phosphorylation sites on SPF45 showed both positive and negative regulation of splicing, with a net effect of inhibiting SPF45-induced exon 6 exclusion, correlating with reduced Fas mRNA binding. However, Clk1 enhanced SPF45 protein expression, but not mRNA expression, whereas inhibition of Clk1 increased SPF45 degradation through a proteasome-dependent pathway. Overexpression of SPF45 or a phospho-mimetic mutant, but not a phospho-inhibitory mutant, stimulated ovarian cancer cell migration and invasion, correlating with increased fibronectin expression, ERK activation and enhanced splicing and phosphorylation of full-length cortactin. Our results demonstrate for the first time that SPF45 overexpression enhances cell migration and invasion, dependent on biochemical regulation by Clk1.


Asunto(s)
Empalme Alternativo , Movimiento Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Sitios de Empalme de ARN , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Cortactina/metabolismo , Exones , Fibronectinas/metabolismo , Humanos , Mutación , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Factores de Empalme de ARN , ARN Mensajero/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
4.
Carcinogenesis ; 35(5): 1100-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24379240

RESUMEN

The E3 ubiquitin ligase EDD is overexpressed in recurrent, platinum-resistant ovarian cancers, suggesting a role in tumor survival and/or platinum resistance. EDD knockdown by small interfering RNA (siRNA) induced apoptosis in A2780ip2, OVCAR5 and ES-2 ovarian cancer cells, correlating with loss of the prosurvival protein myeloid cell leukemia sequence 1 (Mcl-1) through a glycogen synthase kinase 3 beta-independent mechanism. SiRNA to EDD or Mcl-1 induced comparable levels of apoptosis in A2780ip2 and ES-2 cells. Stable overexpression of Mcl-1 protected cells from apoptosis following EDD knockdown, accompanied by a loss of endogenous, but not exogenous, Mcl-1 protein, suggesting that EDD regulated Mcl-1 synthesis. Indeed, EDD knockdown induced a 1.87-fold decrease in Mcl-1 messenger RNA and EDD transfection enhanced murine Mcl-1 promoter-driven luciferase expression 5-fold. To separate EDD survival and potential cisplatin resistance functions, we generated EDD shRNA stable cell lines that could survive initial EDD knockdown and showed that these cells were 4- to 21-fold more sensitive to cisplatin. Moreover, transient EDD overexpression in COS-7 cells was sufficient to promote cisplatin resistance 2.4-fold, dependent upon its E3 ligase activity. In vivo, mouse intraperitoneal ES-2 and A2780ip2 xenograft experiments showed that mice treated with EDD siRNA by nanoliposomal delivery [1,2-dioleoyl-sn-glycero-3-phophatidylcholine (DOPC)] and cisplatin had significantly less tumor burden than those treated with control siRNA/DOPC alone (ES-2, 77.9% reduction, P = 0.004; A2780ip2, 75.9% reduction, P = 0.042) or control siRNA/DOPC with cisplatin in ES-2 (64.4% reduction, P = 0.035), with a trend in A2780ip2 (60.3% reduction, P = 0.168). These results identify EDD as a dual regulator of cell survival and cisplatin resistance and suggest that EDD is a therapeutic target for ovarian cancer.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Ováricas/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma Epitelial de Ovario , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cisplatino/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Proteolisis , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Biol Chem ; 287(38): 31794-803, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22833671

RESUMEN

Sphingosine kinase 1 (SK1) is an important enzyme involved in the production of the bioactive lipid sphingosine 1-phosphate (S1P). SK1 is overexpressed in many forms of cancer, however, the contribution of SK1 to cancer progression is still unclear. One of the best characterized mutations found in several forms of human cancer is an activating point mutation in the Ras oncogene, which disrupts its GTPase activity and leads to stimulation of the MEK/ERK pathway. Because SK1 activity and subcellular localization have been shown to be regulated by ERK, we wished to investigate the effect of oncogenic Ras, a potent activator of the Raf/MEK/ERK pathway, on the activity of SK1 and sphingolipid metabolism. Using HEK293T cells transiently transfected with the K-RasG12V oncogene and both wild type and Sphk1(-/-) mouse embryonic fibroblasts stably infected with retroviral K-RasG12V, we found that K-RasG12V increases the production of S1P and decreases the production of ceramide in a SK1-dependent manner. In addition, we found that expression of the K-RasG12V oncogene leads to plasma membrane localization of SK1 and a reduction in cytosolic levels of SK1. This effect is likely mediated by the Raf/MEK/ERK pathway as constitutively active B-Raf or MEK1 are able to activate SK1, but constitutively active Akt1 is not. We believe this research has important implications for how sphingolipids may be contributing to oncogenic transformation and provide some of the first evidence for oncogenes inducing specific changes in sphingolipid metabolism through SK1 regulation.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Esfingolípidos/química , Proteínas ras/metabolismo , Animales , Membrana Celular/metabolismo , Transformación Celular Neoplásica , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Fosforilación , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Fracciones Subcelulares/metabolismo , Proteínas ras/fisiología
6.
Bioorg Med Chem Lett ; 20(15): 4526-30, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20580230

RESUMEN

A thiazolidine-2,4-dione derivative, 3-(2-aminoethyl)-5-(3-phenyl-propylidene)-thiazolidine-2,4-dione (2), was identified as a dual inhibitor of the Raf/MEK/ extracellular signal-regulated kinase (ERK) and the phosphatidylinositol 3-kinase (PI3K)/Akt signaling cascades. The discovered compound inhibited cell proliferation, induced early apoptosis, and arrested cells in G(0)/G(1) phase in human leukemia U937 cells. These results indicate its potential as a new lead compound to develop novel dual signaling pathway inhibitors and anticancer agents.


Asunto(s)
Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Tiazolidinas/química , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-raf/metabolismo , Tiazolidinas/síntesis química , Tiazolidinas/farmacología
7.
Oncogene ; 39(5): 1112-1124, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31597954

RESUMEN

Epidermal growth factor receptor (EGFR) is commonly over-expressed in metastatic breast cancer yet metastatic breast cancer is generally resistant to anti-EGFR therapies, and the mechanism for resistance to EGFR inhibitors in this setting is not fully understood. Hormonally up-regulated neu-associated kinase (HUNK) kinase is up-regulated in aggressive breast cancers and is thought to play a role in breast cancer metastasis. However, no studies have been conducted to examine a relationship between EGFR and HUNK in breast cancer metastasis. We performed a kinase substrate screen and identified that EGFR is phosphorylated by HUNK. Our studies show that HUNK phosphorylates EGFR at T654, enhancing receptor stability and downstream signaling. We found that increased phosphorylation of T654 EGFR correlates with increased epithelial to mesenchymal, migration and invasion, and metastasis. In addition, we found that HUNK expression correlates with overall survival and distant metastasis free survival. This study shows that HUNK directly phosphorylates EGFR at T654 to promote metastasis and is the first study to show that the phosphorylation of this site in EGFR regulates metastasis.


Asunto(s)
Neoplasias de la Mama/patología , Receptores ErbB/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Transformación Celular Neoplásica , Transición Epitelial-Mesenquimal , Femenino , Humanos , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Fosforilación , Transducción de Señal
8.
J Cell Biol ; 162(2): 281-91, 2003 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-12876277

RESUMEN

Activation of the Ras-MAPK signal transduction pathway is necessary for biological responses both to growth factors and ECM. Here, we provide evidence that phosphorylation of S298 of MAPK kinase 1 (MEK1) by p21-activated kinase (PAK) is a site of convergence for integrin and growth factor signaling. We find that adhesion to fibronectin induces PAK1-dependent phosphorylation of MEK1 on S298 and that this phosphorylation is necessary for efficient activation of MEK1 and subsequent MAPK activation. The rapid and efficient activation of MEK and phosphorylation on S298 induced by cell adhesion to fibronectin is influenced by FAK and Src signaling and is paralleled by localization of phospho-S298 MEK1 and phospho-MAPK staining in peripheral membrane-proximal adhesion structures. We propose that FAK/Src-dependent, PAK1-mediated phosphorylation of MEK1 on S298 is central to the organization and localization of active Raf-MEK1-MAPK signaling complexes, and that formation of such complexes contributes to the adhesion dependence of growth factor signaling to MAPK.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células COS , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Chlorocebus aethiops , Activación Enzimática , Factor de Crecimiento Epidérmico/farmacología , Fibroblastos/citología , Fibroblastos/enzimología , Fibronectinas/metabolismo , Quinasa 1 de Adhesión Focal , Proteína-Tirosina Quinasas de Adhesión Focal , Adhesiones Focales/metabolismo , Regulación de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/farmacología , MAP Quinasa Quinasa 1 , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-raf/efectos de los fármacos , Proteínas Proto-Oncogénicas c-raf/metabolismo , Pirimidinas/farmacología , Ratas , Proteínas Recombinantes/metabolismo , Quinasas p21 Activadas , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/efectos de los fármacos , Familia-src Quinasas/metabolismo
9.
Bioorg Med Chem Lett ; 19(21): 6042-6, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19796943

RESUMEN

A series of analogs of 3-(2-amino-ethyl)-5-(4-ethoxy-benzylidene)-thiazolidine-2,4-dione, a putative substrate-specific ERK1/2 inhibitor, were synthesized and biologically characterized in human leukemia U937 cells to define its pharmacophore. It was discovered that shift of ethoxy substitution from the 4- to the 2-position on the phenyl ring significantly improved functional activities of inhibiting cell proliferation and inducing apoptosis. This may provide access to a new lead for developing ERK1/2 substrate-specific inhibitors.


Asunto(s)
Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Tiazolidinedionas/química , Apoptosis , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular , Simulación por Computador , Humanos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Especificidad por Sustrato , Tiazolidinedionas/síntesis química , Tiazolidinedionas/farmacología
10.
Curr Mol Pharmacol ; 12(3): 215-229, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30767757

RESUMEN

BACKGROUND: Epigenetic alterations comprise key regulatory events that dynamically alter gene expression and their deregulation is commonly linked to the pathogenesis of various diseases, including cancer. Unlike DNA mutations, epigenetic alterations involve modifications to proteins and nucleic acids that regulate chromatin structure without affecting the underlying DNA sequence, altering the accessibility of the transcriptional machinery to the DNA, thus modulating gene expression. In cancer cells, this often involves the silencing of tumor suppressor genes or the increased expression of genes involved in oncogenesis. Advances in laboratory medicine have made it possible to map critical epigenetic events, including histone modifications and DNA methylation, on a genome-wide scale. Like the identification of genetic mutations, mapping of changes to the epigenetic landscape has increased our understanding of cancer progression. However, in contrast to irreversible genetic mutations, epigenetic modifications are flexible and dynamic, thereby making them promising therapeutic targets. Ongoing studies are evaluating the use of epigenetic drugs in chemotherapy sensitization and immune system modulation. With the preclinical success of drugs that modify epigenetics, along with the FDA approval of epigenetic drugs including the DNA methyltransferase 1 (DNMT1) inhibitor 5-azacitidine and the histone deacetylase (HDAC) inhibitor vorinostat, there has been a rise in the number of drugs that target epigenetic modulators over recent years. CONCLUSION: We provide an overview of epigenetic modulations, particularly those involved in cancer, and discuss the recent advances in drug development that target these chromatin-modifying events, primarily focusing on novel strategies to regulate the epigenome.


Asunto(s)
Antineoplásicos/uso terapéutico , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Metilación de ADN/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/genética
11.
J Cell Biochem ; 105(3): 875-84, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18726893

RESUMEN

Ovarian cancer metastasis involves the sloughing of epithelial cells from the ovary into the peritoneal cavity, where the cells can survive and proliferate in peritoneal ascites under anchorage-independent conditions. For normal epithelial cells and fibroblasts, cell adhesion to the extracellular matrix is required to prevent apoptosis and for proper activation and nuclear signaling of the ERK MAP kinase. The mechanisms of ERK regulation by adhesion have been determined by our lab and others. In this report, we elucidate a novel means of ERK regulation by cellular adhesion in ovarian cancer cells. We demonstrate that ERK and its activator MEK are robustly stimulated after cell detachment from a substratum in several ovarian cancer cell lines, but not a benign ovarian cell line, independent of serum and FAK or PAK activity. MEK and ERK activation was sustained for 48 h after detachment, while activation by serum or growth factors in adherent cells was transient. Re-attachment of suspended ovarian cells to fibronectin restored basal levels of MEK and ERK activity. ERK activity in suspended cells was dynamically controlled through an autocrine stimulatory pathway and prevalent phosphatase activity. Suspended cells demonstrated higher levels of ERK nuclear signaling to Elk1 compared to adherent cells. Inhibition of ERK activation with the MEK inhibitor U0126 had minor effects on adherent cell growth, but greatly decreased growth in soft agar. These data demonstrate a unique regulation of ERK by cellular adhesion and suggest a mechanism by which ERK may regulate anchorage-independent growth of metastatic ovarian cancer cells.


Asunto(s)
Núcleo Celular/enzimología , Uniones Célula-Matriz/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias Ováricas/enzimología , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/genética , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias Ováricas/patología , Regulación hacia Arriba
12.
Cell Signal ; 19(7): 1488-96, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17314031

RESUMEN

Extracellular signal-Regulated Kinase (ERK) controls a variety of cellular processes, including cell proliferation and cell motility. While oncogenic mutations in Ras and B-Raf result in deregulated ERK activity and proliferation and migration in some tumor cells, other tumors exhibit elevated ERK signaling in the absence of these mutations. Here we provide evidence that PAK can directly activate MEK1 by a mechanism distinct from conventional Ras/Raf mediated activation. We find that PAK phosphorylation of MEK1 serine 298 stimulates MEK1 autophosphorylation on the activation loop, and activation of MEK1 activity towards ERK in in vitro reconstitution experiments. Serines 218 and/or 222 in the MEK1 activation loop are required for PAK-stimulated MEK1 activity towards ERK. MEK2, which is a poor target for PAK phosphorylation in cells, is not activated in this manner. Tissue culture experiments verify that this mechanism is used in suspended fibroblasts expressing mutationally activated PAK1. We speculate that aberrant signaling through PAK may directly induce anchorage-independent MEK1 activation in tumor cells lacking oncogenic Ras or Raf mutations, and that this mechanism may contribute to localized MEK signaling in focal contacts and adhesions during cell adhesion or migration.


Asunto(s)
MAP Quinasa Quinasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células COS , Adhesión Celular , Chlorocebus aethiops , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/enzimología , Fibronectinas/metabolismo , Humanos , Fosforilación , Proteínas Proto-Oncogénicas B-raf/metabolismo , Ratas , Serina/metabolismo , Quinasas p21 Activadas , Proteínas ras/metabolismo
13.
Adv Cancer Res ; 138: 99-142, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29551131

RESUMEN

The extracellular-regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine-threonine kinases that are involved in regulating cellular signaling in both normal and pathological conditions. Their expression is critical for development and their hyperactivation is a major factor in cancer development and progression. Since their discovery as one of the major signaling mediators activated by mitogens and Ras mutation, we have learned much about their regulation, including their activation, binding partners and substrates. In this review I will discuss some of what has been discovered about the members of the Ras to ERK pathway, including regulation of their activation by growth factors and cell adhesion pathways. Looking downstream of ERK activation I will also highlight some of the many ERK substrates that have been discovered, including those involved in feedback regulation, cell migration and cell cycle progression through the control of transcription, pre-mRNA splicing and protein synthesis.


Asunto(s)
Antineoplásicos/uso terapéutico , Adhesión Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Proteínas ras/metabolismo , Animales , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
14.
Oncotarget ; 9(89): 35962-35973, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30542510

RESUMEN

HUNK is a protein kinase that is implicated in HER2-positive (HER2+) breast cancer progression and resistance to HER2 inhibitors. Though prior studies suggest there is therapeutic potential for targeting HUNK in HER2+ breast cancer, pharmacological agents that target HUNK are yet to be identified. A recent study showed that the broad-spectrum kinase inhibitor staurosporine binds to the HUNK catalytic domain, but the effect of staurosporine on HUNK enzymatic activity was not tested. We now show that staurosporine inhibits the kinase activity of a full length HUNK protein. Our findings further suggest that inhibiting HUNK with staurosporine has a strong effect on suppressing cell viability of HER2/neu mammary and breast cancer cells, which express high levels of HUNK protein and are dependent on HUNK for survival. Significantly, we use in vitro and in vivo methods to show that staurosporine synergizes with the HER2 inhibitor lapatinib to restore sensitivity toward HER2 inhibition in a HER2 inhibitor resistant breast cancer model. Collectively, these studies indicate that pharmacological inhibition of HUNK kinase activity has therapeutic potential for HER2+ breast cancers, including HER2+ breast cancers that have developed drug resistance.

15.
Mol Cell Biol ; 22(17): 6023-33, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12167697

RESUMEN

Utilizing mutants of extracellular signal-regulated kinase 2 (ERK2) that are defective for intrinsic mitogen-activated protein kinase or ERK kinase (MEK) binding, we have identified a convergent signaling pathway that facilitates regulated MEK-ERK association and ERK activation. ERK2-delta19-25 mutants defective in MEK binding could be phosphorylated in response to mitogens; however, signaling from the Raf-MEK pathway alone was insufficient to stimulate their phosphorylation in COS-1 cells. Phosphorylation of ERK2-delta19-25 but not of wild-type ERK2 in response to Ras V12 was greatly inhibited by dominant-negative Rac. Activated forms of Rac and Cdc42 could enhance the association of wild-type ERK2 with MEK1 but not with MEK2 in serum-starved adherent cells. This effect was p21-activated kinase (PAK) dependent and required the putative PAK phosphorylation sites T292 and S298 of MEK1. In detached cells placed in suspension, ERK2 was complexed with MEK2 but not with MEK1. However, upon replating of cells onto a fibronectin matrix, there was a substantial induction of MEK1-ERK2 association and ERK activation, both of which could be inhibited by dominant-negative PAK1. These data show that Rac facilitates the assembly of a mitogen-activated protein kinase signaling complex required for ERK activation and that this facilitative signaling pathway is active during adhesion to the extracellular matrix. These findings reveal a novel mechanism by which adhesion and growth factor signals are integrated during ERK activation.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Unión al GTP rac/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Adhesión Celular , Chlorocebus aethiops , Medio de Cultivo Libre de Suero/farmacología , Activación Enzimática , Factor de Crecimiento Epidérmico/farmacología , MAP Quinasa Quinasa 1 , Sustancias Macromoleculares , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Proteínas Recombinantes de Fusión/fisiología , Eliminación de Secuencia , Transfección , Quinasas p21 Activadas
16.
Mol Cell Biol ; 24(6): 2308-17, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14993270

RESUMEN

Cell adhesion and spreading depend on activation of mitogen-activated kinase, which in turn is regulated both by growth factor and integrin signaling. Growth factors, such as epidermal growth factor, are capable of activating Ras and Raf, but integrin signaling is required to couple Raf to MEK and MEK to extracellular signal-regulated protein kinase (ERK). It was previously shown that Rac-p21-activated kinase (PAK) signaling regulated the physical association of MEK1 with ERK2 through phosphorylation sites in the proline-rich sequence (PRS) of MEK1. It was also shown that activation of MEK1 and ERK by integrins depends on PAK phosphorylation of S298 in the PRS. Here we report a novel MEK1-specific regulatory feedback mechanism that provides a means by which activated ERK can terminate continued PAK phosphorylation of MEK1. Activated ERK can phosphorylate T292 in the PRS, and this blocks the ability of PAK to phosphorylate S298 and of Rac-PAK signaling to enhance MEK1-ERK complex formation. Preventing ERK feedback phosphorylation on T292 during cellular adhesion prolonged phosphorylation of S298 by PAK and phosphorylation of S218 and S222, the MEK1 activating sites. We propose that activation of ERK during adhesion creates a feedback system in which ERK phosphorylates MEK1 on T292, and this in turn blocks additional S298 phosphorylation in response to integrin signaling.


Asunto(s)
Adhesión Celular/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Sitios de Unión/genética , Células COS , Activación Enzimática , Retroalimentación , MAP Quinasa Quinasa 1 , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Quinasas p21 Activadas
17.
Mol Endocrinol ; 20(3): 503-15, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16282370

RESUMEN

Activation of signal transduction kinase cascades is known to alter androgen receptor (AR) activity, but the molecular mechanisms are still poorly defined. Here we show that stress kinase signaling regulates Ser 650 phosphorylation and AR nuclear export. In LNCaP prostate cancer cells, activation of either MAPK kinase (MKK) 4:c-Jun N-terminal kinase (JNK) or MKK6:p38 signaling pathways increased Ser 650 phosphorylation, whereas pharmacologic inhibition of JNK or p38 signaling led to a reduction of AR Ser 650 phosphorylation. Both p38alpha and JNK1 phosphorylated Ser 650 in vitro. Small interfering RNA-mediated knockdown of either MKK4 or MKK6 increased endogenous prostate-specific antigen (PSA) transcript levels, and this increase was blocked by either bicalutamide or AR small interfering RNA. Stress kinase inhibition of PSA transcription is, therefore, dependent on the AR. Similar experiments involving either activation or inhibition of MAPK/ERK kinase:ERK signaling had little effect on Ser 650 phosphorylation or PSA mRNA levels. Ser 650 is proximal to the DNA binding domain that contains a nuclear export signal. Mutation of Ser 650 to alanine reduced nuclear export of the AR, whereas mutation of Ser 650 to the phosphomimetic amino acid aspartate restored AR nuclear export. Pharmacologic inhibition of stress kinase signaling reduced wild-type AR nuclear export equivalent to the S650A mutant without affecting nuclear export of the S650D mutant. Our data suggest that stress kinase signaling and nuclear export regulate AR transcriptional activity.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transporte Activo de Núcleo Celular , Antagonistas de Andrógenos/farmacología , Antagonistas de Receptores Androgénicos , Anilidas/farmacología , Línea Celular Tumoral , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , MAP Quinasa Quinasa 6/genética , MAP Quinasa Quinasa 6/metabolismo , Masculino , Mutación , Nitrilos , Fosforilación , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Quinasas/genética , Serina/metabolismo , Transducción de Señal , Estrés Fisiológico , Compuestos de Tosilo , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
PLoS One ; 8(3): e60185, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23533674

RESUMEN

RGS10 regulates ovarian cancer cell growth and survival, and RGS10 expression is suppressed in cell models of ovarian cancer chemoresistance. However, the mechanisms governing RGS10 expression in ovarian cancer are poorly understood. Here we report RGS10 suppression in primary ovarian cancer and CAOV-3 ovarian cancer cells compared to immortalized ovarian surface epithelial (IOSE) cells, and in A2780-AD chemoresistant cells compared to parental A2780 cells. RGS10-1 and RGS10-2 transcripts are expressed in ovarian cancer cells, but only RGS10-1 is suppressed in A2780-AD and CAOV-3 cells, and the RGS10-1 promoter is uniquely enriched in CpG dinucleotides. Pharmacological inhibition of DNA methyl-transferases (DNMTs) increased RGS10 expression, suggesting potential regulation by DNA methylation. Bisulfite sequencing analysis identified a region of the RGS10-1 promoter with significantly enhanced DNA methylation in chemoresistant A2780-AD cells relative to parental A2780 cells. DNA methylation in CAOV-3 and IOSE cells was similar to A2780 cells. More marked differences were observed in histone acetylation of the RGS10-1 promoter. Acetylated histone H3 associated with the RGS10-1 promoter was significantly lower in A2780-AD cells compared to parental cells, with a corresponding increase in histone deacetylase (HDAC) enzyme association. Similarly, acetylated histone levels at the RGS10-1 promoter were markedly lower in CAOV-3 cells compared to IOSE cells, and HDAC1 binding was doubled in CAOV-3 cells. Finally, we show that pharmacological inhibition of DNMT or HDAC enzymes in chemoresistant A2780-AD cells increases RGS10 expression and enhances cisplatin toxicity. These data suggest that histone de-acetylation and DNA methylation correlate with RGS10 suppression and chemoresistance in ovarian cancer. Markers for loss of RGS10 expression may identify cancer cells with unique response to therapeutics.


Asunto(s)
Metilación de ADN/genética , Histonas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Proteínas RGS/genética , Acetilación , Línea Celular Tumoral , Femenino , Humanos
20.
Biochem Pharmacol ; 83(8): 1063-72, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22248731

RESUMEN

The acquisition of resistance to chemotherapy is a significant problem in the treatment of cancer, greatly increasing patient morbidity and mortality. Tumors are often sensitive to chemotherapy upon initial treatment, but repeated treatments can select for those cells that were able to survive initial therapy and have acquired cellular mechanisms to enhance their resistance to subsequent chemotherapy treatment. Many cellular mechanisms of drug resistance have been identified, most of which result from changes in gene and protein expression. While changes at the transcriptional level have been duly noted, it is primarily the post-transcriptional processing of pre-mRNA into mature mRNA that regulates the composition of the proteome and it is the proteome that actually regulates the cell's response to chemotherapeutic insult, inducing cell survival or death. During pre-mRNA processing, intronic non-protein-coding sequences are removed and protein-coding exons are spliced to form a continuous template for protein translation. Alternative splicing involves the differential inclusion or exclusion of exonic sequences into the mature transcript, generating different mRNA templates for protein production. This regulatory mechanism enables the potential to produce many different protein isoforms from the same gene. In this review I will explain the mechanism of alternative pre-mRNA splicing and look at some specific examples of how splicing factors, splicing factor kinases and alternative splicing of specific pre-mRNAs from genes have been shown to contribute to acquisition of the drug resistant phenotype.


Asunto(s)
Empalme Alternativo , Resistencia a Antineoplásicos/genética , Neoplasias/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA