Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35163791

RESUMEN

Therapeutic activation of thermogenic brown adipose tissue (BAT) may be feasible to prevent, or treat, cardiometabolic disease. However, rodents are commonly housed below thermoneutrality (~20 °C) which can modulate their metabolism and physiology including the hyperactivation of brown (BAT) and beige white adipose tissue. We housed animals at thermoneutrality from weaning to chronically supress BAT, mimic human physiology and explore the efficacy of chronic, mild cold exposure (20 °C) and ß3-adrenoreceptor agonism (YM-178) under these conditions. Using metabolic phenotyping and exploratory proteomics we show that transfer from 28 °C to 20 °C drives weight gain and a 125% increase in subcutaneous fat mass, an effect not seen with YM-178 administration, thus suggesting a direct effect of a cool ambient temperature in promoting weight gain and further adiposity in obese rats. Following chronic suppression of BAT, uncoupling protein 1 mRNA was undetectable in the subcutaneous inguinal white adipose tissue (IWAT) in all groups. Using exploratory adipose tissue proteomics, we reveal novel gene ontology terms associated with cold-induced weight gain in BAT and IWAT whilst Reactome pathway analysis highlights the regulation of mitotic (i.e., G2/M transition) and metabolism of amino acids and derivatives pathways. Conversely, YM-178 had minimal metabolic-related effects but modified pathways involved in proteolysis (i.e., eukaryotic translation initiation) and RNA surveillance across both tissues. Taken together these findings are indicative of a novel mechanism whereby animals increase body weight and fat mass following chronic suppression of adaptive thermogenesis from weaning. In addition, treatment with a B3-adrenoreceptor agonist did not improve metabolic health in obese animals raised at thermoneutrality.


Asunto(s)
Acetanilidas/administración & dosificación , Tejido Adiposo Pardo/metabolismo , Proteómica/métodos , Tiazoles/administración & dosificación , Aumento de Peso/genética , Acetanilidas/farmacología , Tejido Adiposo Pardo/efectos de los fármacos , Animales , Frío , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratas , Grasa Subcutánea/metabolismo , Termogénesis/efectos de los fármacos , Tiazoles/farmacología , Proteína Desacopladora 1/genética
2.
J Neurochem ; 156(2): 143-144, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33165910

RESUMEN

Tanycytes are glial cells in the hypothalamus that are functionally part of the blood-brain barrier. They can sense nutrients and metabolites in the circulation such as glucose, then signal to neuronal systems to influence ingestive behaviour and energy storage, and ultimately affect body weight. The complex structure of tanycytes underpins this function, and communication is dependent upon connexin-43 gap junctions between tanycytes. This Editorial highlights studies by Recabal and coworkers (Recabal et al., 2020) in the current issue that shed some light on how this happens, and on how FGF2 might induce plasticity in hypothalamic structure through changes in tanycyte function that are dependent on connexin-43 hemichannels. This Editorial Highlights the article https://doi.org/10.1111/jnc.15188.


Asunto(s)
Conexina 43 , Células Ependimogliales , Encéfalo/metabolismo , Proliferación Celular , Conexina 43/metabolismo , Células Ependimogliales/metabolismo , Factor 2 de Crecimiento de Fibroblastos
3.
Glia ; 66(6): 1176-1184, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29411421

RESUMEN

Studies from a number of areas of neuroendocrinology indicate that hypothalamic tanycytes play a key role in control of energy metabolism. First, profound annual changes in gene expression have been identified in these unusual glial cells in seasonal mammals, for example in genes relating to the transport and metabolism of thyroid hormone into the hypothalamus. The consequent changes in local thyroid hormone availability in the hypothalamus have been shown experimentally to regulate annual cycles in energy intake, storage and expenditure in seasonal species. This is reflected in overt seasonal changes in appetite, body fat composition and torpor. Second, studies in laboratory rodents demonstrate that hypothalamic tanycytes possess transport mechanisms and receptors that indicate they have a cellular function as nutrient sensors. Ex vivo studies with organotypic tanycyte cultures confirm that acute changes in nutrient availability alter calcium and purinergic signalling within and between tanycytes. Finally, tanycytes are components of a stem cell niche in the hypothalamus whose activity can be regulated by the nutritional environment. Experimental depletion of cell division in the hypothalamus alters the homeostatic response to nutrient excess in mice raised in high fat diets. These convergent lines of evidence suggest that tanycytes are nutrient and metabolite sensors that impact upon plasticity and neuronal function in the surrounding hypothalamus, and consequently have an important role in energy intake and expenditure.


Asunto(s)
Metabolismo Energético/fisiología , Células Ependimogliales/metabolismo , Hipotálamo/metabolismo , Animales , Células Ependimogliales/citología , Humanos , Hipotálamo/citología
4.
Exp Physiol ; 103(6): 876-883, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29663541

RESUMEN

NEW FINDINGS: What is the central question of this study? The role of FGF21 as an exercise-induced myokine remains controversial. The aim of this study was to determine whether eccentric exercise would augment the release of FGF21 and/or its regulatory enzyme, fibroblast activation protein α (FAP), from skeletal muscle tissue into the systemic circulation of healthy human volunteers. What is the main finding and its importance? Eccentric exercise does not release total or bioactive FGF21 from human skeletal muscle. However, exercise releases its regulatory enzyme, FAP, from tissue(s) other than muscle, which might play a role in the inactivation of FGF21. ABSTRACT: The primary aim of the investigation was to determine whether eccentric exercise would augment the release of the myokine fibroblast growth factor 21 (FGF21) and/or its regulatory enzyme, fibroblast activation protein α (FAP), from skeletal muscle tissue into the systemic circulation of healthy human volunteers. Physically active young healthy male volunteers (age 25.0 ± 10.7 years; body mass index 23.1 ± 7.9 kg m-2 ) completed three sets of 25 repetitions (with 5 min rest in between) of single-leg maximal eccentric contractions using their non-dominant leg, whilst the dominant leg served as a control. Arterialized blood samples from a hand vein and deep venous blood samples from the common femoral vein of the exercised leg, along with blood flow of the superficial femoral artery using Doppler ultrasound, were obtained before and after each exercise bout and every 20 min during the 3 h recovery period. Muscle biopsy samples were taken at baseline, immediately and 3 and 48 h postexercise. The main findings showed that there was no significant increase in total or bioactive FGF21 secreted from skeletal muscle into the systemic circulation in response to exercise. Furthermore, skeletal muscle FGF21 protein content was unchanged in response to exercise. However, there was a significant increase in arterialized and venous FAP concentrations, with no apparent contribution to its release from the exercised leg. These findings raise the possibility that the elevated levels of FAP might play a role in the inactivation of FGF21 during exercise.


Asunto(s)
Ejercicio Físico/fisiología , Factores de Crecimiento de Fibroblastos/sangre , Gelatinasas/sangre , Proteínas de la Membrana/sangre , Serina Endopeptidasas/sangre , Adulto , Endopeptidasas , Humanos , Masculino , Proteínas Musculares/sangre , Músculo Esquelético/metabolismo , Flujo Sanguíneo Regional/fisiología , Descanso/fisiología
5.
Front Neuroendocrinol ; 37: 97-107, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25449796

RESUMEN

Seasonal cycles of fattening and body weight reflecting changes in both food intake and energy expenditure are a core aspect of the biology of mammals that have evolved in temperate and arctic latitudes. Identifying the neuroendocrine mechanisms that underlie these cycles has provided new insights into the hypothalamic control of appetite and fuel oxidation. Surprisingly, seasonal cycles do not result from changes in the leptin-responsive and homeostatic pathways located in the mediobasal and lateral hypothalamus that regulate meal timing and compensatory responses to starvation or caloric restriction. Rather, they result from changes in tanycyte function, which locally regulates transport and metabolism of thyroid hormone and retinoic acid. These signals are crucial for the initial development of the brain, so it is hypothesized that seasonal neuroendocrine cycles reflect developmental mechanisms in the adult hypothalamus, manifest as changes in neurogenesis and plasticity of connections.


Asunto(s)
Peso Corporal/fisiología , Ingestión de Alimentos/fisiología , Hipotálamo/fisiología , Sistemas Neurosecretores/fisiología , Estaciones del Año , Animales , Regulación del Apetito/fisiología , Humanos , Hormonas Tiroideas/fisiología
6.
Addict Biol ; 21(6): 1127-1139, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26180025

RESUMEN

The psychoactive effects of mephedrone are commonly compared with those of 3,4-methylenedioxymethamphetamine, but because of a shorter duration of action, users often employ repeated administration to maintain its psychoactive effects. This study examined the effects of repeated mephedrone administration on locomotor activity, body temperature and striatal dopamine and 5-hydroxytryptamine (5-HT) levels and the role of dopaminergic and serotonergic neurons in these responses. Adult male Lister hooded rats received three injections of vehicle (1 ml/kg, i.p.) or mephedrone HCl (10 mg/kg) at 2 h intervals for radiotelemetry (temperature and activity) or microdialysis (dopamine and 5-HT) measurements. Intracerebroventricular pre-treatment (21 to 28 days earlier) with 5,7-dihydroxytryptamine (150 µg) or 6-hydroxydopamine (300 µg) was used to examine the impact of 5-HT or dopamine depletion on mephedrone-induced changes in temperature and activity. A final study examined the influence of i.p. pre-treatment (-30 min) with the 5-HT1A receptor antagonist WAY-100635 (0.5 mg/kg), 5-HT1B receptor antagonist GR 127935 (3 mg/kg) or the 5-HT7 receptor antagonist SB-258719 (10 mg/kg) on mephedrone-induced changes in locomotor activity and rectal temperature. Mephedrone caused rapid-onset hyperactivity, hypothermia (attenuated on repeat dosing) and increased striatal dopamine and 5-HT release following each injection. Mephedrone-induced hyperactivity was attenuated by 5-HT depletion and 5-HT1B receptor antagonism, whereas the hypothermia was completely abolished by 5-HT depletion and lessened by 5-HT1A receptor antagonism. These findings suggest that stimulation of central 5-HT release and/or inhibition of 5-HT reuptake play a pivotal role in both the hyperlocomotor and hypothermic effects of mephedrone, which are mediated in part via 5-HT1B and 5-HT1A receptors.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Dopaminérgicos/farmacología , Locomoción/efectos de los fármacos , Metanfetamina/análogos & derivados , Antagonistas de la Serotonina/farmacología , 5,7-Dihidroxitriptamina , Adrenérgicos/farmacología , Análisis de Varianza , Animales , Dopamina/metabolismo , Dopamina/fisiología , Dopaminérgicos/administración & dosificación , Hipercinesia/inducido químicamente , Hipotermia/inducido químicamente , Masculino , Metanfetamina/administración & dosificación , Metanfetamina/farmacología , Neurotoxinas/farmacología , Oxidopamina/farmacología , Ratas , Serotonina/metabolismo , Serotonina/fisiología , Serotoninérgicos/farmacología , Antagonistas de la Serotonina/administración & dosificación
7.
Horm Behav ; 66(1): 56-65, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24681216

RESUMEN

This article is part of a Special Issue "Energy Balance". Seasonal cycles of adiposity and body weight reflecting changes in both food intake and energy expenditure are the norm in mammals that have evolved in temperate and polar habitats. Innate circannual rhythmicity and direct responses to the annual change in photoperiod combine to ensure that behavior and energy metabolism are regulated in anticipation of altered energetic demands such as the energetically costly processes of hibernation, migration, and lactation. In the last decade, major progress has been made into identifying the central mechanisms that underlie these profound long-term changes in behavior and physiology. Surprisingly they are distinct from the peptidergic and aminergic systems in the hypothalamus that have been identified in studies of the laboratory mouse and rat and implicated in timing meal intervals and in short-term responses to caloric restriction. Comparative studies across rodents, ungulates and birds reveal that tanycytes embedded in the ependymal layer of the third ventricle play a critical role in seasonal changes because they regulate the local availability of thyroid hormone. Understanding how this altered hormonal environment might regulate neurogenesis and plasticity in the hypothalamus should provide new insight into development of strategies to manage appetite and body weight.


Asunto(s)
Peso Corporal/fisiología , Ingestión de Alimentos/fisiología , Hipotálamo/metabolismo , Mamíferos/fisiología , Fotoperiodo , Hormonas Tiroideas/metabolismo , Animales , Mamíferos/metabolismo
8.
Horm Behav ; 66(1): 180-5, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24909854

RESUMEN

This article is part of a Special Issue "Energy Balance". FGF21 is an endocrine member of the fibroblast growth factor superfamily that has been shown to play an important role in the physiological response to nutrient deprivation. Food restriction enhances hepatic FGF21 production, which serves to engage an integrated response to energy deficit. Specifically, elevated FGF21 levels lead to reduced gluconeogenesis and increased hepatic ketogenesis. However, circulating FGF21 concentrations also paradoxically rise in states of metabolic dysfunction such as obesity. Furthermore, multiple peripheral tissues also produce FGF21 in addition to the liver, raising questions as to its endocrine and paracrine roles in the control of energy metabolism. The objectives of this study were to measure plasma FGF21 concentrations in the Siberian hamster, a rodent which undergoes a seasonal cycle of fattening and body weight gain in the long days (LD) of summer, followed by reduction of appetite and fat catabolism in the short days (SD) of winter. Groups of adult male hamsters were raised in long days, and then exposed to SD for up to 12 weeks. Chronic exposure of LD animals to SD led to a significant increase in circulating FGF21 concentrations. This elevation of circulating FGF21 was preceded by an increase in liver FGF21 protein production evident as early as 4 weeks of exposure to SD. FGF21 protein abundance was also increased significantly in interscapular brown adipose tissue, with a positive correlation between plasma levels of FGF21 and BAT protein abundance throughout the experimental period. Epididymal white adipose tissue and skeletal muscle (gastrocnemius) also produced FGF21, but levels did not change in response to a change in photoperiod. In summary, a natural programmed state of fat catabolism was associated with increased FGF21 production in the liver and BAT, consistent with the view that FGF21 has a role in adapting hamsters to the hypophagic winter state.


Asunto(s)
Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Factores de Crecimiento de Fibroblastos/biosíntesis , Fotoperiodo , Animales , Cricetinae , Factores de Crecimiento de Fibroblastos/sangre , Masculino , Phodopus/fisiología
9.
Glia ; 59(11): 1695-705, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21769945

RESUMEN

The objective of this study is to investigate the impact of photoperiod on the temporal and spatial expression of genes involved in glucose metabolism in the brain of the seasonal mammal Phodopus sungorus (Siberian hamster). In situ hybridization was performed on brain sections obtained from male hamsters held in long photoperiod (high body weight and developed testes) or short photoperiod (reduced body weight with testicular regression). This analysis revealed upregulation in expression of genes involved in glycogen and glucose metabolism in short photoperiod and localized to the tanycyte layer of the third ventricle. On the basis of these data and a previously identified photoperiod-dependent increase in activity of neighboring hypothalamic neurons, we hypothesized that the observed expression changes may reflect alteration in either metabolic fuel or precursor neurotransmitter supply to surrounding neurons. Gene expression analysis was performed for genes involved in lactate and glutamate transport. This analysis showed that the gene for the lactate transporter MCT2 and glutamate transporter GLAST was decreased in the tanycyte layer in short photoperiod. Expression of mRNA for glutamine synthetase, the final enzyme in the synthesis of the neuronal neurotransmitter precursor, glutamine, was also decreased in short photoperiod. These data suggest a role for tanycytes in modulating glutamate concentrations and neurotransmitter supply in the hypothalamic environment.


Asunto(s)
Epéndimo/citología , Epéndimo/metabolismo , Glutamina/biosíntesis , Glucógeno/metabolismo , Glucólisis/fisiología , Hipotálamo/fisiología , Fotoperiodo , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Clonación Molecular , Cricetinae , ADN Complementario/biosíntesis , ADN Complementario/genética , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Hibridación in Situ , Ácido Láctico/metabolismo , Masculino , Microscopía Electrónica , Neurópilo/metabolismo , Phodopus , Ácido Pirúvico/metabolismo
10.
J Neuroendocrinol ; 33(5): e12968, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33942392

RESUMEN

Gerald Anthony Lincoln died after a short illness on 15 July 2020 at the age of 75 years. Gerald was Emeritus Professor of Biological Timing at Edinburgh University and a Fellow of the Royal Society of Edinburgh. He was an outstanding scientist and naturalist who was a seminal figure in developing our understanding of the neuroendocrine mechanisms underlying seasonal rhythmicity. This review considers his life and some of his major scientific contributions to our understanding of seasonality, photoperiodism and circannual rhythmicity. It is based on a presentation at the online 2nd annual seasonality symposium (2 October 2020) that was supported financially by the Journal of Neuroendocrinology.


Asunto(s)
Biología/historia , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Periodicidad , Escocia
11.
Sci Rep ; 11(1): 19796, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611283

RESUMEN

We previously reported that growth promoter-induced skeletal muscle hypertrophy co-ordinately upregulated expression of genes associated with an integrated stress response (ISR), as well as potential ISR regulators. We therefore used Adeno-Associated Virus (AAV)-mediated overexpression of these genes, individually or in combination, in mouse skeletal muscle to test whether they induced muscle hypertrophy. AAV of each target gene was injected into mouse Tibialis anterior (TA) and effects on skeletal muscle growth determined 28 days later. Individually, AAV constructs for Arginase-2 (Arg2) and Activating transcription factor-5 (Atf5) reduced hindlimb muscle weights and upregulated expression of genes associated with an ISR. AAV-Atf5 also decreased Myosin heavy chain (MyHC)-IIB mRNA, but increased MyHC-IIA and isocitrate dehydrogenase-2 (Idh2) mRNA, suggesting ATF5 is a novel transcriptional regulator of Idh2. AAV-Atf5 reduced the size of both TA oxidative and glycolytic fibres, without affecting fibre-type proportions, whereas Atf5 combined with Cebpg (CCAAT enhancer binding protein-gamma) only reduced the size of glycolytic fibres and tended to increase the proportion of oxidative fibres. It is likely that persistent Atf5 overexpression maintains activation of the ISR, thereby reducing protein synthesis and/or increasing protein degradation and possibly apoptosis, resulting in inhibition of muscle growth, with overexpression of Arg2 having a similar effect.


Asunto(s)
Factores de Transcripción Activadores/genética , Dependovirus/genética , Expresión Génica , Vectores Genéticos/genética , Músculo Esquelético/metabolismo , Estrés Fisiológico , Transducción Genética , Factores de Transcripción Activadores/metabolismo , Animales , Metabolismo Energético , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Ratones , ARN Mensajero/genética
12.
Am J Physiol Regul Integr Comp Physiol ; 298(5): R1409-16, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20200136

RESUMEN

The objective of this study was to determine whether the previously observed effects of photoperiod on body weight in Siberian hamsters were due to changes in the daily patterns of locomotor activity, energy expenditure, and/or feeding behavior. Adult males were monitored through a seasonal cycle using an automated comprehensive laboratory animal monitoring system (CLAMS). Exposure to a short-day photoperiod (SD; 8:16-h light-dark cycle) induced a significant decline in body weight, and oxygen consumption (Vo(2)), carbon dioxide production (Vco(2)), and heat production all decreased reaching a nadir by 16 wk of SD. Clear daily rhythms in locomotor activity, Vo(2), and Vco(2) were observed at the start of the study, but these all progressively diminished after prolonged exposure to SD. Rhythms in feeding behavior were also detected initially, reflecting an increase in meal frequency but not duration during the dark phase. This rhythm was lost by 8 wk of SD exposure such that food intake was relatively constant across dark and light phases. After 18 wk in SD, hamsters were transferred to a long-day photoperiod (LD; 16:8-h light-dark cycle), which induced significant weight gain. This was associated with an increase in energy intake within 2 wk, while Vo(2), Vco(2), and heat production all increased back to basal levels. Rhythmicity was reestablished within 4 wk of reexposure to long days. These results demonstrate that photoperiod impacts on body weight via complex changes in locomotor activity, energy expenditure, and feeding behavior, with a striking loss of daily rhythms during SD exposure.


Asunto(s)
Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Actividad Motora/fisiología , Phodopus/fisiología , Fotoperiodo , Estaciones del Año , Animales , Regulación de la Temperatura Corporal/fisiología , Peso Corporal/fisiología , Dióxido de Carbono/metabolismo , Cricetinae , Cabello/fisiología , Masculino , Mamíferos , Consumo de Oxígeno/fisiología
13.
J Biol Rhythms ; 24(2): 114-25, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19346449

RESUMEN

Spermatogenesis is an essential precursor for successful sexual reproduction. Recently, there has been an expansion in the knowledge of the genes associated with particular stages of normal, physiological testicular development and pubertal activation. What has been lacking, however, is an understanding of those genes that are involved in specifically regulating sperm production, rather than in maturation and elaboration of the testis as an organ. By using the reversible (seasonal) fertility of the Syrian hamster as a model system, the authors sought to discover genes that are specifically involved in turning off sperm production and not involved in tissue specification and/or maturation. Using gene expression microarrays and in situ hybridization in hamsters and genetically infertile mice, the authors have identified a variety of known and novel factors involved in reversible, transcriptional, translational, and posttranslational control of testicular function, as well those involved in cell division and macromolecular metabolism. The novel genes uncovered could be potential targets for therapies against fertility disorders.


Asunto(s)
Fertilidad/fisiología , Regulación de la Expresión Génica , Estaciones del Año , Testículo/fisiología , Animales , Cricetinae , Perfilación de la Expresión Génica , Humanos , Masculino , Mesocricetus , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Fotoperiodo , Espermatogénesis/fisiología
14.
J Ethnopharmacol ; 262: 113187, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32730892

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Khat (Catha edulis (Vahl) Forssk.) is a herb from the Celastraceae family (also known as qat, gaad, or mirra) that is widely-consumed in East Africa and in the Arabian peninsula. The green leaves and small stems are consumed primarily at recreational and social gatherings, and medicinally for their antidiabetic and appetite-suppression effects. AIMS: The objectives of this study were to determine the effects of khat and its active alkaloid, cathinone, on food intake and body weight in mice maintained on a high-fat diet, and to investigate its mechanism of action in white adipose tissue and in the hypothalamus. MATERIALS & METHOD: Adult male mice (C57BL/6J) were fed a high fat diet (HFD) for 8 weeks (n = 30), then divided into 5 groups and treated daily for a further 8 weeks with HFD + vehicle [control (HFD)], HFD + 15 mg/kg orlistat (HFDO), HFD + 200 mg/kg khat extract (HFDK200), HFD + 400 mg/kg khat extract (HFDK400) and HFD + 3.2 mg/kg cathinone (HFDCAT). Treatments were carried out once daily by gastric gavage. Blood and tissue samples were collected for biochemical, hormonal and gene expression analyses. RESULTS: Khat extracts and orlistat treatment significantly reduced weight gain as compared to control mice on HFD, and cathinone administration completely prevented weight gain in mice fed on HFD. Khat treatment caused a marked reduction in body fat and in serum triglycerides. A dose-dependent effect of khat was observed in reducing serum leptin concentrations. Analysis of gene expression in adipose tissue revealed a significant upregulation of two lipolysis pathway genes:(adipose triglyceride lipase (PNPLA-2) and hormone-sensitive lipase (LIPE). In the hypothalamic there was a significant (P < 0.05) upregulation of agouti-related peptide (AgRP) and cocaine-amphetamine regulated transcript (CART) genes in the HFDK400 and HFDCAT groups. CONCLUSION: Cathinone treatment blocked body weight gain, while high dose khat extract significantly reduced the weight gain of mice on an obesogenic diet through stimulation of lipolysis in white adipose tissue.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Catha , Dieta Alta en Grasa/efectos adversos , Lipólisis/efectos de los fármacos , Obesidad/genética , Extractos Vegetales/uso terapéutico , Tejido Adiposo Blanco/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Lipólisis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-32265830

RESUMEN

Aim: Exercise training elicits diverse effects on brown (BAT) and white adipose tissue (WAT) physiology in rodents housed below their thermoneutral zone (i.e., 28-32°C). In these conditions, BAT is chronically hyperactive and, unlike human residence, closer to thermoneutrality. Therefore, we set out to determine the effects of exercise training in obese animals at 28°C (i.e., thermoneutrality) on BAT and WAT in its basal (i.e., inactive) state. Methods: Sprague-Dawley rats (n = 12) were housed at thermoneutrality from 3 weeks of age and fed a high-fat diet. At 12 weeks of age half these animals were randomized to 4-weeks of swim-training (1 h/day, 5 days per week). Following a metabolic assessment interscapular and perivascular BAT and inguinal (I)WAT were taken for analysis of thermogenic genes and the proteome. Results: Exercise attenuated weight gain but did not affect total fat mass or thermogenic gene expression. Proteomics revealed an impact of exercise training on 2-oxoglutarate metabolic process, mitochondrial respiratory chain complex IV, carbon metabolism, and oxidative phosphorylation. This was accompanied by an upregulation of multiple proteins involved in skeletal muscle physiology in BAT and an upregulation of muscle specific markers (i.e., Myod1, CkM, Mb, and MyoG). UCP1 mRNA was undetectable in IWAT with proteomics highlighting changes to DNA binding, the positive regulation of apoptosis, HIF-1 signaling and cytokine-cytokine receptor interaction. Conclusion: Exercise training reduced weight gain in obese animals at thermoneutrality and is accompanied by an oxidative signature in BAT which is accompanied by a muscle-like signature rather than induction of thermogenic genes. This may represent a new, UCP1-independent pathway through which BAT physiology is regulated by exercise training.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Transdiferenciación Celular/genética , Músculo Esquelético/metabolismo , Obesidad/terapia , Condicionamiento Físico Animal/fisiología , Temperatura , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/fisiología , Animales , Metabolismo Energético/genética , Perfilación de la Expresión Génica , Masculino , Obesidad/metabolismo , Ratas , Ratas Sprague-Dawley , Termogénesis/fisiología , Transcriptoma
16.
Mol Metab ; 31: 45-54, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918921

RESUMEN

OBJECTIVE: Fibroblast growth factor 21 (FGF21) has been shown to rapidly lower body weight in the Siberian hamster, a preclinical model of adiposity. This induced negative energy balance mediated by FGF21 is associated with both lowered caloric intake and increased energy expenditure. Previous research demonstrated that adipose tissue (AT) is one of the primary sites of FGF21 action and may be responsible for its ability to increase the whole-body metabolic rate. The present study sought to determine the relative importance of white (subcutaneous AT [sWAT] and visceral AT [vWAT]), and brown (interscapular brown AT [iBAT]) in governing FGF21-mediated metabolic improvements using the tissue-specific uptake of glucose and lipids as a proxy for metabolic activity. METHODS: We used positron emission tomography-computed tomography (PET-CT) imaging in combination with both glucose (18F-fluorodeoxyglucose) and lipid (18F-4-thiapalmitate) tracers to assess the effect of FGF21 on the tissue-specific uptake of these metabolites and compared responses to a control group pair-fed to match the food intake of the FGF21-treated group. In vivo imaging was combined with ex vivo tissue-specific functional, biochemical, and molecular analyses of the nutrient uptake and signaling pathways. RESULTS: Consistent with previous findings, FGF21 reduced body weight via reduced caloric intake and increased energy expenditure in the Siberian hamster. PET-CT studies demonstrated that FGF21 increased the uptake of glucose in BAT and WAT independently of reduced food intake and body weight as demonstrated by imaging of the pair-fed group. Furthermore, FGF21 increased glucose uptake in the primary adipocytes, confirming that these in vivo effects may be due to a direct action of FGF21 at the level of the adipocytes. Mechanistically, the effects of FGF21 are associated with activation of the ERK signaling pathway and upregulation of GLUT4 protein content in all fat depots. In response to treatment with FGF21, we observed an increase in the markers of lipolysis and lipogenesis in both the subcutaneous and visceral WAT depots. In contrast, FGF21 was only able to directly increase the uptake of lipid into BAT. CONCLUSIONS: These data identify brown and white fat depots as primary peripheral sites of action of FGF21 in promoting glucose uptake and also indicate that FGF21 selectively stimulates lipid uptake in brown fat, which may fuel thermogenesis.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo Energético , Factores de Crecimiento de Fibroblastos/metabolismo , Tejido Adiposo/diagnóstico por imagen , Animales , Cricetinae , Masculino , Phodopus , Tomografía Computarizada por Tomografía de Emisión de Positrones
17.
Behav Pharmacol ; 20(2): 155-65, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19339875

RESUMEN

Siberian hamsters develop hypophagia and increase catabolism of fat reserves in response to short photoperiods resulting in a natural loss of body weight in winter. We previously found that histamine 3 receptor (H3R) mRNA in the posterior hypothalamus is significantly decreased in short photoperiods. We hypothesized that this lower expression of H3R might contribute to the winter hypophagic state, therefore we examined the effects of the H3R agonist imetit and inverse agonists clobenpropit and thioperamide on food intake. We expressed the Siberian hamster H3R receptor in vitro and confirmed that imetit, clobenpropit and thioperamide are bound specifically, thus validating them as tools to investigate the role of H3R in vivo. Intracerebroventricular administration of histamine decreased food intake in hamsters in the fat summer state. Administration of imetit to hamsters in the lean state increased food intake, whereas administration of inverse agonists decreased food intake, though this was associated with decreased locomotor activity. Both H3R inverse agonists prevented the nocturnal rise in body temperature indicating additional effects on energy expenditure. In summary, our results suggest that increased availability of central histamine or the reduction of H3R activity decrease food intake. These effects are similar to those observed in hamsters in short photoperiods.


Asunto(s)
Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Obesidad , Phodopus , Receptores Histamínicos H3/efectos de los fármacos , Receptores Histamínicos H3/fisiología , Estaciones del Año , Animales , Temperatura Corporal/efectos de los fármacos , Línea Celular Transformada , Cricetinae , Histamina/administración & dosificación , Imidazoles/farmacología , Inyecciones Intraventriculares , Actividad Motora/efectos de los fármacos , Fotoperiodo , Piperidinas/farmacología , Receptores Histamínicos H3/genética , Tiourea/análogos & derivados , Tiourea/farmacología , Transfección
18.
Proc Nutr Soc ; 78(3): 272-278, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30457065

RESUMEN

Animal models are valuable for the study of complex behaviours and physiology such as the control of appetite because genetic, pharmacological and surgical approaches allow the investigation of underlying mechanisms. However, the majority of such studies are carried out in just two species, laboratory mice and rats. These conventional laboratory species have been intensely selected for high growth rate and fecundity, and have a high metabolic rate and short lifespan. These aspects limit their translational relevance for human appetite control. This review will consider the value of studies carried out in a seasonal species, the Siberian hamster, which shows natural photoperiod-regulated annual cycles in appetite, growth and fattening. Such studies reveal that this long-term control is not simply an adjustment of the known hypothalamic neuronal systems that control hunger and satiety in the short term. Long-term cyclicity is probably driven by hypothalamic tanycytes, glial cells that line the ventricular walls of the hypothalamus. These unique cells sense nutrients and metabolic hormones, integrate seasonal signals and effect plasticity of surrounding neural circuits through their function as a stem cell niche in the adult. Studies of glial cell function in the hypothalamus offer new potential for identifying central targets for appetite and body weight control amenable to dietary or pharmacological manipulation.


Asunto(s)
Apetito/fisiología , Metabolismo Energético/fisiología , Células Ependimogliales , Hipotálamo , Animales , Peso Corporal/fisiología , Ingestión de Energía/fisiología , Células Ependimogliales/metabolismo , Células Ependimogliales/fisiología , Femenino , Hormonas/metabolismo , Hipotálamo/citología , Hipotálamo/fisiología , Masculino , Ratones , Phodopus , Fotoperiodo , Ratas
19.
J Neuroendocrinol ; 31(5): e12729, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31059174

RESUMEN

Seasonal neuroendocrine cycles that govern annual changes in reproductive activity, energy metabolism and hair growth are almost ubiquitous in mammals that have evolved at temperate and polar latitudes. Changes in nocturnal melatonin secretion regulating gene expression in the pars tuberalis (PT) of the pituitary stalk are a critical common feature in seasonal mammals. The PT sends signal(s) to the pars distalis of the pituitary to regulate prolactin secretion and thus the annual moult cycle. The PT also signals in a retrograde manner via thyroid-stimulating hormone to tanycytes, which line the ventral wall of the third ventricle in the hypothalamus. Tanycytes show seasonal plasticity in gene expression and play a pivotal role in regulating local thyroid hormone (TH) availability. Within the mediobasal hypothalamus, the cellular and molecular targets of TH remain elusive. However, two populations of hypothalamic neurones, which produce the RF-amide neuropeptides kisspeptin and RFRP3 (RF-amide related peptide 3), are plausible relays between TH and the gonadotrophin-releasing hormone-pituitary-gonadal axis. By contrast, the ways by which TH also impinges on hypothalamic systems regulating energy intake and expenditure remain unknown. Here, we review the neuroendocrine underpinnings of seasonality and identify several areas that warrant further research.


Asunto(s)
Relojes Circadianos/fisiología , Sistemas Neurosecretores/fisiología , Hipófisis/fisiología , Animales , Células Ependimogliales/fisiología , Humanos , Hipotálamo/fisiología , Neuronas/fisiología , Fotoperiodo , Estaciones del Año , Hormonas Tiroideas/fisiología
20.
Trends Endocrinol Metab ; 30(8): 491-504, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31248786

RESUMEN

Fibroblast growth factor 21 (FGF21) is a protein highly synthesized in the liver that exerts paracrine and endocrine control of many aspects of energy homeostasis in multiple tissues. In preclinical models of obesity and type 2 diabetes, treatment with FGF21 improves glucose homeostasis and promotes weight loss, and, as a result, FGF21 has attracted considerable attention as a therapeutic agent for the treatment of metabolic syndrome in humans. An improved understanding of the biological role of FGF21 may help to explain why its therapeutic potential in humans has not been fully realized. This review will cover the complexities in FGF21 biology in rodents and humans, with emphasis on its role in protection from central and peripheral facets of obesity.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Tejido Adiposo/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Humanos , Proteínas Klotho
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA